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Supergravity (SG) was invented with a hope to solve the prob-
lem of infinities ih the Einstein theory. Now came the time of
explicite calculations (of counter-terms, B-functions, off shell
and asymptotic behaviour) which are to reveal the structure and
the atatus of quantup SG, Several new results on this way are
the toplic of this report.

Let us first remind a number of known facts sbout the infi-
nities in ungauged O(N) SG's (for refs. see /1/)3 (1) Ne 1, ceey
8 SG's are on-shell finite in I=1,2-order (L is the number of
loops): L=1 - disgram calculations of infinities of the S-matrix
elements; I=1,2 - general argument of the ebsence of an on-shell
non-vanishing superinvarisnt; (2) I 2 3: there exist superinva~-
risnts - candidates for on-shell divergeénces; (3) F-extended SG's
are (off shell) finite (in d-dimensions) for L <2(W-1)/d-2), e.g.
the N=8, d=4 theory is infinite for L > 7 (some plausable
argument based on supergraph power counting rules /2/ )j (4) Na8
SG is divergent for L > 3 (implicite argument ireating N=8 5G
as a £'— 0, d=10 —> 4 limit of the superstring theory ’3/).
Thus different approaches seem to leave the only posaibility for
finiteness if the actual coefficient of an admissable superinva-
rient in the (e.g. J=3) infinities is zero. Two examples of such
kind of "zeroes" were already found in SG at L=1 order; the
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absence of topological and gauge field action counter-terms for

N > 3 and ¥ > 5 respectively (cf. /1/). A new one ~ the ab-
sence of the off shell I=1 "Weyl tensor squared™ type infinities
in the ¥=8 and N=1, d=10 -» 4 theories ~- will be reported in
sect.2, where we_dincuna the L=1 off shell infinities im gauged
0(N) supergravities /4/. Here we make a conjecture that the E=8 -
SG may be L=1 off-shell Pinite (cf. /2/) which, 1f true, may imp-
ly an improvement of higher loop behaviour.

Suppose, however, that N=B8 SG fails to be finite at 3-loop
order, At least two possible modifications of the approach can
then be suggested: (i) consider the N=B8°SG to be only a low ener-

£y menifestation of some fundawental ultraviolet finite supers$-
ring theory in d=10 space-time (with six compact dimensions) /34
(11) change the SG lagrangian by adding super-extensions of the
curvature squared invarianta in order to get a power counting

renormalizable theory (just like it can be done already the
Einstein theory, mee e.g./5/ ). It is the second possibility
that we propose here (see sect., 4). Sect. 3 is devoted to the
discussion of the one=loop B=function 6 (Sect.3) in conformal
supergravities, i.e. the superextensions of the Weyl tensor
squared invariant,

1. Off shell one=loop divergences in gauged O(N) aupergravj_tj_ea/‘i/

In order to get a realistic theory one should consider the
gauged version of the O(N)-Poincame supprgravity (and also try -
to invent some viable mechanism for a spontaneous supersymmetry
breaking). For example, the simplest gauged SG-theory-the 0(2)-
one~has the following lagrengian /77

1 N e N 2 Ry | /"’J }b_". -
aﬁr;(e 2/L)+;25,+“,6 a4
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dimensionless gauge coupling). This theory is one-loop on-~-shell

renormalizable and one can ask about the value of the B8-function

~ for g' o In the first calculation /S/dona in the background

- gravitational sector, gg/was implicitly obtained by utablishi.ng

the _A_ ~term renormalization and then using the relation ./1[: =

e l‘he results. :

-“1'2; 3 ¥ s 6 7 8 (2)

.—.z.% - -2 o0 0 0O O

. where then rederived by a"heuristic" calculation in the background

gauge field mector /9/. The reasoning of / 9/ contained a number

of mjutlﬁ.od allu-ptiom like the validity of the formula ﬂ (s)=
--—f L 'Si)(‘i) C (for the contribution of epin §

- field 1: the gauge field B—i’lmction) for the gravitino ( s= 47, )

and .the poq-il.bi;its to obtain the total result by simple summa-

" .“tiom of contributions of all spins of the SG multiplet.

B e o plovida understanding of the agreement of these two calcu=-
% _ht:ltml of f(’) one should study the off shell divergencea in the
combined gravitational-gauge fleld background sector of the effec-

“tive action (4, ¢4, A.#0 , K =0 ). The one-loop di-

- vergences for various flelds can be evaluated using the formula

(g;aéfa) =-Zy-;)- fd’,{/—gla[* é[ fd}'{%”

where Z,'—v- ' and =-—c2(8)1"X y

- . 22 2 (4)

?" ;, £ = thAdrf*® //:.., 2

2*+fW+ _£+/A?A*:A“

= fe

+pe DR 4 h*Rw'}'ﬂ *3’3‘@%*
+po Fr , W=p -5 ,}'.’..ﬁ.. A TFLF, X5
The central point is establishing the gravit'.l.no contribution (:I.n
the. standart baokg:ound gauge af V =/’(,))

f @) (dta) e
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x d,;‘, A;'L"" Q“4amd"! "Squaring® the 4, -operator we get addi-
tional £ * -infinities due to mixing of the “mass® and the non-
miniwal coupling terms. We found that it is this mixing that is
essential for the correctneas of the g, (5) -formmla for 5= Y2
used in /9/ . The results for different spins contributions in the
gravitational and gauge infinities are the following (we also uti-
1ize the old off-shell results for the Einstein-Maxwell system

A0/):
S Y Jﬁo P:. F‘a. P! F’V F: 'Fs fg P,_
223 |-%a0]-12-22|
a2 |4 = B el e el - i
SRR IR TSI U S B A .4 A [ B A (1 ’
72 37200 60| 2| 3|9 |60 | 6 | ¥
41 |_nn| 4 0. 38 ey

The important fact is the negative "gign" of the gravitino con-
tribution ( 2 ) in tke "Weyl" infinities, which can be cont-
rasted to the positive ones for § = 0,1/2, 1 fields. It should
be stressed that the statement (of. /1('.y) about " A) 0 for any
spin" is not actually applicable for s = 2 and 3/2 (in the
background gauges). One should take into account that here /9_;_ ‘
is gauge dependent (cf. /l1/for S = 2 case and note that the
"one-loop" gravitino laegrangian is superinvariant only if the
background space is the Einstein space).

The final expression for the one~loop off sheil infinities
in the gauged O(N) supergravity can be written in the form: 4

6=0, & = /(-1 4 RN IR, L=
_— (R-;?A) g Br , &?"-:/‘ R R*'-J'/ga[(g"/_
HAc?f-/".fs?: 7/-1/) -3 (R-#) i %ﬁ [R-—?A)’1+/3‘,31R =

X, % (D F) + 4 (R-¥0) +t, 2 T (0, AL,
—3:1/.13" /';,,C)) + 74 2/’0 < ) /"’{/-.z ¢'
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where the coefficients are given in the table (3 =O)
N 1O Ll 213 ¥ S |6 |8 |v=1,4-10+¢
po |- |- |- #F[s]|2|0o]0o o] -
b PHc|s|"r| 0| 0| 0] 0 | o] ©
Lx Yo |-¥%a]-% % -3 -3 -9 |0 0 -
Ps | ¥ |\ Ta| V2| Vy|"Ya|-%a| 0 | 1 %92
Be  |=7s |- |15 |-Ya|-*%] - | 1% 202 s

A - |- | %% ||| Y] -
oy — |40 |6y |88 (ny|ive | 190] 778 -
G | = [= 1% %] ¢ =v | =3
P," =% 8| - -1ol -0 s =¥ - 3
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Several conclusions follow from these results:
(1) we explicitly demonstrate that gauged SG's are on-shell
(1=1) renormalizable (up to tupological infinity) (i.e. afier the
ey -k ,,——Agf -?a T.,=0 , R-YA =0,

&r F v = 0 ) &
(2) the or shell renormalizations of /) and 7~ are given by the
sgme coefficient 5,6, explaining the agreement of the results of
refs.(8/ and /Y3 -
(3) there ism no on-shell quadratic divergences in all theoriea
with ¥ > 3;
(4) ¥ = 8 SG and the theory, obtained by a redqstion of the
N=1 d=10 SG (the last columm of the table) are off shell finite
in the gravitational 2*-sector (have £, = 0). Thus the N=8 SG
is distinguished by having a wmaximal degree of the off shell
finiteness: 8, =/, -A =(0 .« One may even conjecture that it is
completely oft shell finite (for I=1) when treated in a’ suitable
background supergauge where o/, = «,= () (it may turn out that
also P-; )'3 O in ‘this gauge if the NE=8 superextension of R
does not exist).
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2. One=loop e-function in _pure conformal supergravities /5/

Conformal supergravities are UWw) (NV=1, 20 4) super=-
‘conformal extensions of the Weyl. invariant WwW=R v- 3 R B
The lagrangien has the ‘following ntructure /12/ /'
L= W), =W CE LA
—FE vy e i gt |

where ¢ V(,,av S /" V;’ .!é;_ /""/’5"4‘ )

while A  ana V are U(1) and SU(#) gauge fields and ¢l 1
"conformal gravitino" Why these theories are interesting: (1)
they are gauge theories with the maximal known group-supercon-
formal group, including the ordinary and conformal supersymmet-
ries, scale and chiral U (#)transformations; 2) they are power
counting !enornalizable due to hig f' derivatives in the kine=-
tic terms, ILjineen ™~ Aurd 4 W P !“'44 ﬂ/}'.’ (Note that for the
correct counting of degue- of f.reednu one should properly ac-
acount for the "averaging over: glugea" operators, e.g. for the
N = 1 theory we have )7 = (() *("3)“, é)A = ) 3

3) N = 1,2,3-theories are laxuptoticalh free, wh‘.lle the H=4
theory is finite (in one-loop). More explicitly, one can obtain
the following results for the S8-function for the dimensionless
coupling o 3

v=1: F /e; thy Ths = '_ > i

139
"““/gs- 22 18 the value for the pure Weyl theory /5/

]
3+ - _ ‘WJ;JD e 0 is the conformal gravitino part in the

Wiintinities in the gravitational sector, estsblished in/6/
with the use of the algoritkms for the divergences of the 4=th
and 3-d order differential operators and &, = 1/5 is the
axial vector field contribution.N=2: 5, =4, + 2By * /e f,.?y

( SV, ~ gauge field V;’ ) + ,8 (2 spinora A )+

(1 anthxmeiric tensor field rg o? T _7" ) = 1-3/3 .
- Nw3 =f, + 3P +/’4 "/s’,,(.s 5) A (54Y)+

+ (3 compie:: scalars /?r (J’I"J 4_/ (1 spinorA

AONETONI
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l;l‘! .P=F&+({/* ‘f'fv (‘SU) +/3 (-?02".‘.)1&
4'5 (10 Eyy) + fr ((T*J) +/54 (74,) +
+Be (3 cmplex seabar €, %~ C*¥0*C) = O

(where we _nnu-ed an appropriate gravitational coupling of the
‘scalar C). Interpreting —o("e-j ' as the Ulw) gauge coupl-
ing, we get the following sequence (cf. with the O(N) Poincare SG
sequence (2)) (in physical applications o >0 )

N : 4 2 3 7

17 /3 _ o (8)
p-at) - -3 -1+ 0O

However, the conforeal supergravities lack a low energy correspon=-
dence with the_Einstein theory. That is why in order to get a
viable theory one should add also the ordinary (linear in cur-
vature) supergravity term in the lagrangian.

3. B ble supergzrav mod
Let us coﬁl!.der the following lagrangian

o?'#-é(ﬁ)s_;*é@v)“ 36*? ()e)s_c > .(9)

where the brackets denote the corresponding superextensions. This
theory is renormalizable, possesaes the correct Einstein limit but
_ lacks portuxb.tivo unitar:lt: due to the presence of ghosts.However,
ghoats here £411 a: luperlnltiplet and thus may decouple in some
non-pe:'tubutive way. The phyuical spectrun contains gauge fields
of :Eoinenc 8a, whilsU{/V) gauvge fields of conformal SG are in
fact auxiliaries for Poincare SG. Some generalization of (9) _
probably exisis for =4, ...., 8 with higher apin fields being
auxiliary (propageting) in Poincare (conformal) SG-parts.

‘One can prove.that the inclusion of the |0+, ~term in-the
conformal SG lagrangian. 1ncrouu the value of the Weyl coupling
F(d)-:l‘nnction. Thus we get the aunptot.tcallx free behaviour for

ol also for N=4 theory and may hope for some N:8=(, In turn,
the addition of conformal SG term to the Poincare one (1) changes



the renormwalization of the physical gauge field coupling g} :

all negative gravitino and matter fields contributions in A(q)
are suppressed due to higher derivative terms in the conformal
SG part. Therefore the value of (1) is the same as for the free
0(N) gauge field in the flat space~time, i.e. corresponds to the
asymptotic freedom in contrast to the non-asymptotically free
results in pure Poimcare SG case (2). Now let us mention a possi-
bility that a superextension of the R2-term may not exist for
some N > 2, Then the superconformal theory

o= =% f¢5‘-_.§9.¢9,¢+4¢ ),m,

is an attractive candidate for a fundamental theory if it has
: P(d)" O (no superconformal anomalies end posgible solution of
the problem of ghosts). The presence of conformal supergravity
term may also help to provide a spontaneous supersymmetry break-
ing. The important fact is that one can add some matter multi-
plets to (9) or (10) without deatroing renormalizability. Obtain-
ing in this way a sufficient spectrum of particles (or taking in
account that additional particles may appear =8 monopoles after
a spontaneous supersymmetry breaking) we get a power counting
renormalizable asymptotically free (or finite) unified theory. .

In conclusion we want to point out that the renormalizable
supergravity (9) can be considered as an "induced supergravity"
theory. Suppose we start with the lagrangian

/ 2. g8 7 ( )

P L A,
containing messless gauge and spinor watter fields interacting
with the external conformal supergravity fields and also the purs
conformal SG part. Asmuming that the regularization breaks the
conformal symmetry but preserves the general covariance and local
supersymmetry, we ?et (according to the ideas of "induced gra=-
vity" approaeh ) the following effective lagrangian

02.': " EL (R*.?AW)“—- 7 (R) = CN)S}”"-nz)

ond
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where t¢h4 ’ Jq¢.4 and 63&4 are finite calculable cons=-
tants. One can probably induce the Poincare SG term in (12) even
without matter terms in (11) (i.e. starting only with conformal
SG term). Thus the conformal supergravity itself may be a true
theory on some fundamental level,
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