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We prove that quantum gravity with a quadmtic Iagrangian of a general type is asymptotically free in all essential cou-
pling constants (including the effcctive A-term). One-loop counter terms are obtained and asymptotic freedom is establish-
od also in conformally-invariant theories. We discuss the possibility of a ultra-macroscopic radius of confinement of ghosts,
the restoration of unitarity due to radiative corrections and propose also that interaction with m\rlt* leads o asymptotic

]

freedom for the effective masses and all coupling constants in grand unified gauge theories,

The well-known difficulties in the quantized Ein-

stein theory have recently raised much interest in the
theory of gravity with a quadratic lagrangian (see e8|
refs, [1=7]). Thé claims of the lack of unitarity (on .
the tree level) should not be taken too seriously: the < -
question of unitarity is a dynamical one and must be
discussed taking account of, the radiative corrections -
and probably nonperturbatively [8,3—5] . We con- v
sider this theory as a possible alternative to the at-
tempts of constricting a unified uitraviolet €UV)-  _
" finite theory on the basis of extended supergravity,
leading (after the inclusion of matter, described by
grand unified madels) to § complete renormalizable
theory of all interactions in nature,

Unified vector gauge theories solved the problem
of gauge “charges” by indicating their dynamical or-
igin (the meaning of asymptotic freedom (AF) is that -
the bare couplings are zero in the local limit) but left
the question about the values of the bare masses and
non-gauge (¢% anil Yukawp) * 5" open, One
can conjecture that gravityf can provide AF-behaviour -
for all interactions but in the Einstein theory thisis .~
principally only possible in 2 nonperturbative ap- .
proach [9] . We shall see thht renormalizable gravity
(treated in the context of gerturbation theory) not
only is AF in all its coupling constants but very like-
ly solves the problem of mdsses and “charges” by es-
tablishing the AFyegime for them.
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In this paper we obtain the one-loop counter terms
first for free quantum gravity correcting the result of
ref. [4]) and then in the presence of matter and dis-

~cuss the UV-behaviour of the solutions of the corre-
. sponding renormalization group (RG) equations,

The theory under consideration has the foﬂowmg
* bare euclidean action *! |

!

T= [ 2/ VAds, (1)

| -

.E-I\—k;z(R - 2A) +aW+§bR* +ay R*R®,  (2)

where T and xg are the boundary terms in the Ein.

_stein action [10,8,25,11] and in the Euler number

[12] necessary (as A) for renormalizability and also ~ -
(Z) for correspondence with the Einstein theory on
-the level of the tres S-mltri.x Tha nnmial coupling™
constants *3 are a1, 51, A= Ak3 and

kg (note that R — 4A=-zbk’31:eon:hedmcx1

RA

#1 x =3 pA
Our notations are: R a,r WA

WeRZ, _LR?, x=x +xs-<3’i’r’r'u R°R*

X VEdx + [y dx).
“’moseonmchthuctwndependsbeimulcuhtedon

the general solution of classical field equations, thus having
- gauge independent g-fonctions {cf. refs. {13,14]).
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., lowing (as well as 8) type a8 <
& =D41' ?‘?Du?r_*wg‘pn +‘.¢ ; 'an = Yw'- (9) ;

Volume 104B, number.5

- field-equations). To establish the correct physical
meaning of the theory and consistency of the per- B,
turbative calculations one must put ky; = kg = k2
= 167G after renormalization, The action is positive
 whena=f-2>0,b>0, A > 3/8bk2 but we shall.
not assume that b > 0 because this apparently leads
to the 0" -tachyon on the tree level (if A = 0) [2].

* Quantizing the theory (1) using the background -~
field method [14] in'the gauge X, [2, h] we have

- zlg] =@et) P fanazge -

)( exp {—I[g + 4] -ixﬂx-—_EK&c},“ ’ 3
T where &, = A Aoy 21d A are the “modi
fied" ané’ wordinary™ ghost operators and {1, [g] is

* an appropriate background covariant operator. In the
one-loop approximation a convenient choice is

T -2 - ph =p
X, P,+D,D (8-D,PY), P=D\W,, @)

B s:,D“.}':’“.._ﬁngp - EIRIWE’W - mztz’p = Eng- (5) g

e T A Db RS K
- =8, D*+D,5,~ DD, 1=} +a). ©
- where By, =hy, — 48 L o=ht  m? = 1jak?, w

- =.bfa, B=;w{(lfl-wiwand §; are gauge parameters.
As a result E

2" zl{(-gwoi +D,D,)5PNoh,,

— D, 8BI6h, ;) 8, Dgy iy
what coidicides witil the expression obtained in ref.
(4] from the requizement of BRS-invariance of (3). .
However, the xf{ ;éj structure of the gauge breaking

|

“term in (3)-was not revealed in ref. [4] and therefore '
- the essential factof (det )=1/2 in (3) (which gives
(chznging‘_ -p_-rip’_s?hsn b <0 as in the Einstein theo- -
ry [15])i 4

gy e“ﬂfl de_t(j.(‘:"z

' where Ais the 4th order opgraior on () of the fol- > :

Usirig ‘fhe well-Known ulgoriﬂun for the divergen-

378 |

R

PHYSICS LETTERS

~. of refs. u7n

\

: gt -Ntnlt- 8,
. additional counteriterms) was missed. Finally we get |~ -

G)[det_qrzﬂ) def.(p""ﬁ)] -, 3
- - (B) iy

et ofM'_ B .
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" cies of the determinant of the 2nd order opetator

Ay = -D* + X [16-19] one can find that (for sim-
plicity we omit the boundary terms)

[ =}logdet (u~A,)
N

=48 L* By L2+ Bog WD), (0)

where

L=, B = [b,VEd's b,=G075,
M

and

By, by=u(IRAIY), V=V 0D

2 2 v
AV, AV __lV R¥'+ AVR
= il }D”D'V"'”:l-_ligbilfi-D#N“]. (12)
The method we have us'e:.! #3 gives tje possibility to
_ obtain also the boundary and divergence-like terms
in I and b, (as comparéd with the diagram method
and [4]). d
The b, -coefficient for all ope
following general structure:’

B, =BR*R* 4B, W + B, R} +B,R + B+ B¢D’R
. (13)
[for example, for H,,, (6) one finds using the “4,-
algorithm”: B; = — H5, B2 = . B3 = 13,84 =85 = 0,
Bg = — %] . The total result for the coefficlents in the
divergent part (10) of the effective action in (8) is
given by (517 =5, (8) + 3, () - 28,(8;)),

rators in (8) has the

5w (s ¥ D - (s 1120

.~ . (14)

P

<43 17 find the coefficients in front of the invariants in (1),
"7 (12) it is sufficient to consider the two cases of the
- Tepresentation Aq = A}l) ): A&lv” = _p?+ x(13);
i) a0 = D3 (A, A1) = 4,2 Q,,, O, isan arbitrary
"'+ matrix, and we use the known ansiog of (11 in the case

E
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| pet by = A=
% g Rutesw—f, 8= (o=1/4w- Fym?,

£ i = 4Am2(llg‘+ 1/6w) +m* (5 + 1/8w?)

* [where t = (47) ~2log (F/p), d7 = a~1(#)dr] and can

=Wy

L w) =@ - )@= o B :

* " under the correct choice of the measure in (3)]. Our
" expression for the logarithmic counter terms differs
-, from that of ref. {4] by the contribution of A.

_ for A due to 1{hcz UV-fi
RGNS SE T L _xl ~ 166?\};'_ ~ -1,

.; * c=const,

as).

{note that the L* divergencies are cancelled out [20] . -

The gauge-independent system of the RG-equa-
tions for the essential coupling constants has the form
(L2-terms are simply subtracted and do hot vontrib-

- utein it) _ _
L& =dadi=p, G2y w'=dwfdr=—fHo-fy

- S R ON
Ve (5 + 228K 4 m 85, K=ah=aAR,
| oan

be completely integrated with the following conse-
quences. The theory (1) is AF ina=! = 2 (and Sl ¢

PO=rON /00T K00 18

the solution 1:'01' w(f) hay the UV-fixed ppint“q'.':(é) : ey

e s e va

ff(f}g‘”(ﬂ/ﬂhlp-, aq = const, el .
w, ~0.0046, W, fv;{-'_p':S'.4946, " p~136," ' (T9) :
implying AFbehaviouk for 5= in (1) (under a na-
tural assumption of b < 0 necessary. for correspon-

dence with th Einste
conclusion about

ptotic freedom is valid also .
point for \, A=) =1y,
(0)

Eys. (16), (1‘_?) also have the stable special ﬁied-poﬁlt,
wiution w(f) = wy, X?:; =, corresponding to ay o

- =0in (19) and ¢ = 0in (20) .

Thus in t}te high-energy limit one may neglect R-

¢ and A-terms in (2) (this justifies the flat-space expan- .
- sion and tellsius that the space—time is no¢ becoming

H
o :
3
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theory in the 0" sector). The - -

[

#5 We stress that the IR-growth of m, m’ shows
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" more and more “foamy” with decrease.of the scales,

of. refs. [10,23]) and use the perturbative expansion
ina~!, b-1. A possible mechanism of restoring uni-

* tarity is the summation of the (one-loop) radiative cor-

rections which may shift the ghost pole off the real
axis [8,5,24,6] . One has for the inverse euclidean
propagator (in the UV-limit)

2t @YakDL + (38,13207)p 108 PPk + 1),
0% — @1 - (28,165 g @) -]

@1

and therefore our results B3 > 0, f3(w()) <0 do im-
ply absence of the real poles.

The large distance domain is the strong coupling
region of the theory. In the vicinity of the infrared
(IR) pole in (18) the effective masses of the 2*-ghost
m = (ak2)=12 and the 0*-particle m’ = (-2bk2)-112
are infinite [the I¥- and R2-terms drop from (2)]
which can be treated as a manifestation of “confine-
ment” of the corresponding states **. This effect
could provide a unitary quantum theory in the case
of & microscopic value of the radius of confinement
7. if not for a difficulty connected with the apparent
IR-growth of A. That is why we suppose 7. to be ul-
tramacroscopic (of the order of or greater than the
size of the universe). Choosing the normalization point
in (18) to be at the Planck mass mp we have 72(0)

-~ 0,05 (cf. with the grand unification constant) and
* . therefore m(0) ~ 0.1mp what does not contradict the
" observations [2]. At the same time we can establish
the needed small value for A (= 10~122) for distances
.\ smaller than 7, by a suitable choice of the integration

4 We have also found the renormalization of the boundary
_ terms in (1), using the expressions for the boundary coun-
terparts C; and Cj of B and B4 in (10) (see, ©.5. refs. [21, .-
221). For example, for Az; Gy %K tr1,Cs -‘tr{‘l(rbﬂs
+ (sRWK,,+ RK +..) =3 XK + .} (the latter ex-
pression was derived by the method of “doubling” [21]
- and is probably new). As a result, ay(f).= ay(0) + g
X Nyogts kg();-sen  k(0)[a(0)/a()]”, = 25 and we con-
clude about AF also foray’ and kgin(1). ;
in fact that
mppoluunmlominﬂwlkmmymldap
pmhthawwn(yhmmhawaunhnqto
decrease) but here they are absent due to radiative correc-
tions (21) (cf. the opposite proposals of the UV-growth
of mand m' inrels. (34D, -
[ 379
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constant ¢ in (20). Thus a complementary property
of the asymptotic freedom of the theory (1) may be
_ the presence of some quantum-gnvitational effects

at ultra-large distances, _

Let us now consider the case of the conformally-
invariant theories, ; \\_.
Ly=aW+ avR“R', (22)

L, =—66(~D% + §R)$ + 2A¢* + aW + o, R°R"- (23)

It is important to stress that the expression for coun-
ter terms in the Weyl theory (22) cannot be obtained
bypuumgb=0(andk" =A=0)in (15): (l)b-'O
changes the order of A ln (8) on ¢ which gives the im-
plicit dependence of B, in (15) on b; (ii) one should
deal properly with conformal invariance of the theo-

* 1y. Thus the value of . for (22) in refs. [6,7] claim-

-&d to follow from the (independently incorrect) re-
sult of ref. [4] is erroneous. Our consistent calcula-
tion using the conformal gauge ¢ = 0 and (4), (5) -
with §; = {5 -Omdmamwumgmebackgmund con-
formal invariance by the substitution l’w - g =

- £,,%%(2), R@)=0asin ref [25] shows tlut‘for o
(22) 5y =0and '

; b“- ﬁl IJT' 52 = W ﬂs = =36 l-o (24) .

Hence, according to (18) this theory is really AF as
was proposed in ref. [6].
Calculating the divergencies in the case of b =0 in
** (2) [in the gauge (4), (5) with £y = —§, &3 = 0] 'we -
find by =Y R +3A — 5m? and
=-5

. 54: ﬂl T.’? 62 ?Dza
B, ~‘=—';m #3A,1 | Bg= A2+§9Am2+im

\'(25) i

. and hence after g,/ "*g = g,,9%k2 (the conformal

~ theory (23) [8; # 0 and therefore renormalizability
- takes place only on. the field equations R(@)=4A].
- The RG-equation fdr the emntia.l oouplln; cmmant
A [ef. (17)] ;
N = ;xza-(sw )X+i

. shows that, (as well s for a“‘);there s AF-behmour

* gauge is ?mw,ﬂ =0 [25]) the counter terms in the

L5 (10)]- - -
E Now we;tum to the ducuaion uf t.hn intmcuan
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' ab, = 2(,0110)”&),«))

97 s consequence of (16), (27) the matie felds sup-

" port the asymptotic freedom with respect to 2~! (see
.9 the loluzitm is analogous to :
* it follows that M, and A behave as 2~! in the UV-
o limit thmproﬂdhuAFh the mazs parameters if

#
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of gravity described by (1), (2) with matter. The cor-
responding total theory is renormalizable (in contrast

" with the Einstein theory [26]) if the aR¢2-terms are

added for interacting scalar fields. If all self-interac-
“ticns of matter were absent, the expression for one-
loop.logarithmic divergencies would be given by the
sum of three terms: the gravitational contribution
(15), the contribution of matter fields in the back-
ground metric (which is easily found with the help

.- of the 4, algorithm” [16—19],see e.g. refs. [19,
7))

5% By=—fN — AN+ Ny + ey,

s CB=iND BN+ iy + dNo,

By = ANy + ANl - 6012,

- By = ANy = ym Ny~ §mENG(1-60),
PR 3-5 2”‘1

- 2m}, N \] myNy, (v1))

(heraN is the number uf fields, with spin s and mass
my and Ny ©) js the.n of massless vector fields),
_and the oonmbution of the mixed “h¢"” term

@8)

Where.!") andl") are the kinetic and mass terms in
the matter hgungun Ln=Z,0 0 4 J{,‘“) The direct
calculation gives *(260: - 1)/12aw, k4 = (28w

+1)/3aw for the scalar and x; =k = 0 for the mas-

~ sive vector field (the latter somewhat unexpected re-

sult shows that the interaction with gravity does not
affect, in the one-loop approximation, the AF of the
gauge fields), In the presence of gravity, masses be-
come coupling constants but the mmrim' couplmy

" are notm, but the dimensionless M, -k m? (the

eff.,ctm masses”), The complete symm of the RG~

: . equations includes (16), (17) with g, -rﬂ, =g, +3}

" [see eqgs. (15) and (27)] and the equations for M,
H, B, +m=3, + a(x‘z" R, N =aM,.
(29)

also ref. [5]). From the structure of (17) and (29)
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M(=¢) > 0. Really in the case of one scalar or one vec-

tor field we obtained, respectively: Mo(u) % 610, and
© 1y (e2) = 218, A(>2) == 390, and A(es) ~ —648.

When the self-interactions of matter (g, Vo, |
1g,0%,...) are taken into account (with the necessary
aR«bz-term) we get a system of interrelated RG-equa- '
tions for g;, 0 =a “lg,n, M, .1t seems very likely
" that the solution of this system will show AF-behav-
- jour for all couplings in a relatic model. Two points

" are of principal importance here: (i) gravity gives the
essential contribution to the RG-equations for masses
and “charges” thus leading to the a—1(r) UV-behavi-
our for all dimensionless parameters; (ii) gravity is -
. AF ina~1(r). For example, the flat space “¢4” RG-

* equation, g5 = ng% (with the “zero-charge” solu-
tion), will change in the presence of gravity (with the -
use of the equation for o) into 5 -ul?% +Bg,+C,

~ &, =ag,, which has the AF-solution if g5(e<) > 0. We
have already seen the realization of the latter possibil- -'-
ity for the example of the theory (27) [cf. eq. (26)]..

We conclude that switching on the interaction of .
" mafter with renormalizable quantum gravity proba- =
bly solves the problem of bare masses and (non-
gauge) charges (and also possibly gives a mechanism™

£ TR e B N

e

Y

-~ of spontaneous symmetry breaking without the: puz.zle 7 .-

of the Jarge A-term). Thus (renormalizable) gravity -
is not a *‘universal regul
- provide asymptotic freedom in all coupling constants .
(excluding the gauge ones which are alxudy asymp- 5
totically free).
An extended vemon of this paper [28] will soon
- be published elsewhere ._‘,'
e One of the authors (A T] is very grateful to Dr.
" . R.E.Kallosh for stimulattn; the check of the results
of ref. [6]. _
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