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- ASYMPTOTIC FREEDOM IN EXTENDED CONFORMAL SUPERGRAVITIES

L o .
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We present the calculation of the one-loop g-function in extended conformal supergravities. N = 1,2,3 theories (free or

theory becomes finite under some plausible hypothesis. The results support the possibility to solve the problem of ghosts

coupled to the Einstein supergravities) are found to the asymptotically free (like the ¥ = (0 Wey! theory) while the N = 4 <

in these theories. The obtained sequence of SU(N) g-functions appears to be in remarkable correspondence with that for
gauged O(N) supergravity theories.

Conformal supergravities [1—6] are of physical
interest mainly not on their own standing but coupled
to a superconformal extension of the Einstein theory
(like that of ref. [7])*!

L=Lsp+Low, LsE=—(R1912+63,90,9+..), (1)
Low = o~ 2 {W— [(4 — N)/4N] F3(A)

~-FA(N)+ ..} @)

(here ¢ belongs to an appropriate scalar multiplet and
A, and V¥, are the axial and gauge fields of the V-~
extended superconformal theory [5,6]). This theory”
is renormalizable and does not contain tachyons (or
instabilities on the classical level, see e.g. ref. [9]) if
a?> 0 but for a2 > 0 tree ghosts are present [e.g. 4,
V, *2 as well as those coming from higher derivative
terms in (2)]. However, a remarkable fact is that due
to the supersymmetry the numbers of Fermi and Bose
ghosts are equal (they fill a massive supermultiplet in
addition to a physical multiplet, massless in the sim-
plest case). This may lead to an effective decoupling
of ghosts. Another possibility is that the problem of

¥1 Wwe use euclidean formulation where the physical signs in
the lagrangian are +3(3¢)? + 3FJ, + ... . Our notations

are the same as in ref. [8]: W = RE, — 3R%, Ruy = RN =

9 axrhp - e s —_

Note that these fields play a somewhat auxiliary role in
the theory while the physical gauge fields are those of the
Poincaré supergravity in (1). '

ghosts is cured by the account of radiative corrections.
[10]. This can be realized if the theory is asymptoti-
cally free [11,8] or finite [12] in &> 0 [i.e. if the

B(a) function is positive or zero **].

Thus the knowledge of the one-loop f-function in
N-extended conformal supergravities and hence (after
the addition of the scalar multiplet contribution) in
the total theory (1) seems to be very important. The
general scheme of the corresponding calculation is the
following. We consider the infinite part of the effec-
tive action /., in the gravitational sector where only
the metric has a non-trivial background. The one-loop
relevant part of the action (2) can be written in the
form

-

k= xz_wsﬁp,ws ’ . 3)

where the ¢ are the fields in the theory (including the

Weyl graviton Ay, the third derivative gravitino Vu
etc.) and A, are the background metric dependent

*3 In our notations [8]:

_: -1 8 L? B4
Iza~ 2y, Je=—= log=, * g = ——
e 2@m? 22 0T T

1 g L?
By = fb_ dIq ~2 =q—? —_— —
4™ ooy ) Vatx, & L)=a (“)-'-32?{2!03142'
where [ and Je are the bare action and the infinite part of
the effective action. Note that in this paper we omit
boundary and quédratic divergences.
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p-order differential operators **. The basic observa-
tion is that each term in (3) must be background con-
formal invariant (before gauge fixing) under (W; is the
Weyl weight of the field)

=gy,  g=Agp . (C))

Choosing the background covariant and conformal
invariant gauges (e.g. by assuming that the background
metric has zero curvature scalar, cf, ref. [8]) we can
diagonalize the highest derivative terms of the graviton,
gravitino and the gauge fields operators A,. The
resulting expression for /.. is (see the third footnote)

1
I =3 25 (-1)%(og det =t
Ba= L (-1)Ba(ap,), ©)

where &; = £1 if g is a scalar or Majorana spinor and
Ap, include all necessary ghost and “averaging over
gauges” operators. Introducing the notation

ba=pw, Q)

we conclude that the total f-function.is given by the
sum of the Weyl graviton contribution Sy, NV gravitino
contributions §, and the contributions of the gauge
and the ordinary as well as the higher derivative “mat-
ter” fields in the theory. Some of these are well
known (see e.g. ref. [13] and references therein)

Bo=%5> By2=m, P1=%, Bim=4» ®)
i.e. the results for one scalar, Majorana spinor and

massless and massive vector fields, The Weyl graviton
contribution was obtained in ref. {8]:

Bn=4r% . O

Therefore the main problem is how to establish the
gravitino counterpart B, It is sufficient to do the cor-
responsing calculation using the N = 1 conformal
supergravity lagrangian [1,3]. Its one-loop gravita-
tional sector relevant part can be written in the form

¥4 11 can be proved that all mixings in the action are either
absent (e.g. due to the structure of the invariance group)
or do not contribute in the one-loop infinities (for exam-
ple, the term ¥ W V#x with x being a‘Ma]oran.a spinor leads
to the contribution in the infinities -Sp(V#‘;r,, Vur)
which is zero due to the fact that S-invariance dictates

TuVu=0)

118

(our spinor notations are the same as in refs. [1,3])
Li=a2(W-3FA+ YulsuV,

where
'p'"}'pw'p' XzDuwnf“;Di’s

(Du) = 830y + § 0™ wab)u * Ty
Az ==D3y + V¥ s(Da)pw » (11)
Viw= —Rp[u€v) pacT5Y0 — %RPR €uovoY5Yo

+ Rnu?ﬂ . i’?pngJw * TﬁRp(j.igv)a (1 2)

(we assume for simplicity that DyR,,=0,R =0).In
view of the general coordinate, conformal and chiral
invariances of the complete (untruncated) N =1 the-
ory one can choose the gauges Dyh,, =0, k% =0,
DyA, =0and get the above mentioned gravitational
and axial field contributions in the infinities [see (8),
(9)]. Fixing the remaining Q- and S-supersymmetries
(¥ =Dyk + 74, ...) by the gauges

Dyyu=n(x), y=pn(), (13)

and averaging (see e.g. refs. [14,15] for the general
procadure) over them with the suitable operators (D
and D3) we can cancel ‘the last two terms in (10). The
resulting expression for the y,-part of the partition
function is given by

(det Ay ]”2
Zy= det Agn(det D)V %(det D)1/2° (14

Ad!=_§pn(3m_7|£71479)99=_02_R"lz - (19)

Taking for a moment g, =8, in (14) we conclude
that the third derivative gravitino lagrangian in (10)
describes eight (and not six, or of “three gravitino”,
cf. refs. [1,16]) degrees of freedom just like the Weyl
lagrangian descrobes six (and not four, or of “two
gravitons™) ones (see ref. [8]).

In.order to establish the contribution of A3(11) in
the infinities one should multiply it by the operator
Ay yp = —Dyp. The by-coefficient for the resulting
fourth-order operator
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By =(83° Ay =Dl + Vi (DeDg)pw + Ups ,
V=V + 20 Ryups™, (16)

0 Ruy=0"Rappy, Uuw=0°Ryupo-Rpy+

can be calculated using the A4-algorithm presented in
ref. [8] while the contnbunons of A; = -D?in (14),
Agy in (15) and

at,, = -,Dazw"' iRguw— 0" Ry

are easily obtained with the help of the well-known

Ag-algorithm [14,17]. This yields the following
results for § in (7)

B =BAg)=—r5, BAD=3%
B(Ag) =B(A3) — 388D = & (17)
By =—B(83) + 2B(Agy) + 28(A0) = -2 .

It is worth noting that the gravitino gives the negative
contribution in the gravitational (W) infinities while
the ordinary matter fields (8) and the Weyl graviton
(9) give the positive ones. Using the above results
[egs. (8), (9), (17)] we can finally write down the
expressions for the total number of degrees of free-
dom and the one-loop g-function in the ¥ = 1 con-
formal supergravity

Ni=6-8+2=0, fr=pn+fy+h1=4.  (18)

The value for §; [and thus for By, in (9)] was checked
by the independent calculation of the NV = 1 f-func-
tion in the 4 4-sector of the theory [i.e. substituting
Wby —3F2, in (7)] in ref. [18], where some ques-
tions of this paper are discussed in more detail.

In order to present the analogous results for the
N=2,3,4 extended theories we need first to establish
the contributions in the infinities of some unusual
higher derivative matter fields present in these the-
ories. Let us begin with the antisymmetric tensor
field T, described by the lagrangian [19,6]

B0 =0,T53,Th = @uTw)? - 1@, Tw)®, (19

Tuw=Tuv? 3 €uupaTpo

(note that in the euclidean formulation we use €,

and T, are real). The conformal invariant [with Wq =

+1 in (4)] extension of (19) can be obtained either

PHYSICS LETTERS

25 March 1982
directly or by the comparison with the known N =2
lagrangian in ref. [6]

Lr=D,TpD, Tov—4Ryp Tu_vr;v . (20)

Introducing the natural new variables {, =, —n,,
f:: =+,

T;w = D.uzv = -va,u + epmﬂDuT?ﬁ ) (21)
we can rewrite (20) as
Lr=taafdt, — ODEDHDL) (22)

where A4, has the same form as (16) but now
Vil =Ry - guR* - 2R f}?
+RE e’ —18,8R (23)

Ry =Ry —38uR, Uuy=}iReu.
One must carefully take into account the functional
measure and gauge invariance introduced by (21).
Averaging over the gauges D, {, = 7(x), Dyt =" (x)
we finally get the following partition function for (20)
5 (21 det A, - (det Ap)1/2
T (det a2
where Z; =det Aj [cltet(—JD2 +R )]_l"'2 is the one
gauge field partition functlon As a consequence, T,
describes six- degrees of freedom: three physical and
three ghost [one need the change n - in in order to
obtain (24)], From (24) it follows that the contribu-
tion of T}, in the f-function (7) can be established
again using the A4-algorithm. The result is

Br=is. | (25)

and surprisingly turns to be equal to that for six
scalar fields, cf. (8) [note that the R2infinities of
course cancel due to the conformal invariance of
(20)].

Next let us consider the Majorana spinor field with
the flat-space lagrangian Ad°A. The corresponding con-

)ﬁ. Ay=-D?, (24)

formal invariant extension [W, = —3 in (4)] can be
found to be

Lo=AAPA,

AP =D?+ Ry, — 18uR) 7D, . (26)

Multiplying AY™ by D [in complete analogy with the
case of the A3 gravitino operator in (11)] and using

119
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the Ag-algorithm we are left with [cf. (17)]
BA=—25p - (27

The last non-trivial contribution is given by the scalar
field with the linearized lagrangian CDO?C, the most

general conformal invariant extension of which [We= -

0in (4)] can be shown to be
L=cafc,

AL =D*+ (R, — 38uR) DuDy + §7Ckup . (28)

where Cauyp-is. the Weyl tensor (Cfup = 2W + div) and
~ is an arbitrary constant. This constant should be
fixed by comparison with the complete nonlinear

N = 4 lagrangian presently unknown (cf. ref. [6]).
Therefore we are able only to make a hypothesis that
the true value of y is —1. This value seems to be the
most natural one because it leads to the presence of
the W(1 — |CI?) term in the NV = 4 lagrangian reminis-
cent of the version of the N.= 4 conformal supergrav-
ity with a manifest rigid SU(1,1) and extra local
chiral U(1) invariances [6]. This choice is also justi-
fied a posteriori because it yields the zéro-B function
in the N = 4 theory, the result one could expect either
from the fact that the N = 4 theory is the maximally
extended one (cf. the discussion of other probably
finite theories in ref. [20]) or from the correspon-
dence with the situation in the O(V) supergravity the-
ories [21,22] obvious for the cases NV =1,2,3 (see
below). It is worth stressing that the field C appears
only in the N = 4 theory and thus the results forN=2
and = 3 theories are independent of the above hypoth-
esis. Using the A-algorithm for (28) with v = —1 we
get (the field C is real here)

bo=—i -7=1- @)

Now it is possible to write down the results for the
total number of degrees of freedom and for the one-loop
B-function for the N =2,3,4 extended conformal super-
gravities using their spectra presented in ref. [6] and
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eqs. (8), (9), (17), (25), 27) and (29) (i,/ = 1, . V)
N=2: {1hy,;2 ¥4 1 A,; 3 SU(2) gauge fields Vi

2 spinors x; 1 antisymmetric tensor T’,{'..=T,Eg]} ;
Np=6-2X8+2+3X2-2X2+6=0,
Bii=pPn+ 2By + B+ 3B+ Wy2+hr=.  (30)
N=3: {1hy;3 Wil A8 Vij 1 (8%)spinor A

3 complex scalars Ej; 9 spinors X3 Tfy} ;
Nyjp=6-3X8+2+2X8-3X2

+3X2-9X2+3X6=0,

Brix =B+ 3y +B1+ 881+ fa

+3X 20+ %2+ Pr=1. )
N=4: {1 hy; 4 Yh; 15 Vij; 1 complex (0?)scalar G;
4(33)-spinors Ay; 10 complex scalars Ey);
20 spinors X/x; 6 T}
Ny =6—4X8+15X2+2X2-4X3X2
+2X10-20X2+6X6=0,
By =Pnt 48y + 156 + 2B + 4P
+ 2080 + 2082+ 687 =0. (32)

From these results [and (9) and (18)] we get the
decreasing sequence of positive fy-functions (75,

17 13 1 0) and conclude that if a® > 0 in (2) the

N =1,2,3 conformal supergravities are asymptotically
free just like the (V = 0) Weyl theory [T1,8] while

N =4 theory is finite. However, one can formally con-
sider the situation where a? = —g2 < 0 and so the
gauge fields are physical in (2). Then it is possible to
compare the behaviour of the one-loop 8(g) [=-B(a)]
functions for the U(V) extended conformal and '
gauged O(N) extended De Sitter supergravities. One
finds a remarkable and rather unexpected (in view of
the fact that the O(N) f-functions are defined only on

Table 1

Fields 2 3 1 3 0 Tuw A c
87 137 1 1 1

ow -10 +50 -3 © 36 ~ 0 - = -
199 149 1 1 ™ 1 1 3

uw -3 +50 -3 - 10 -8 - 16 +35 -3

120
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Table 2
Fields 2 2 1 3 0 To A c
o nc B s & % = - -
um 0 -4 +12 - - >0 <0 <0

shell) correspondence, Collecting the results of refs.
{21,22] and the present paper (and also of ref. [18])
we find the following contributions of different fields
in the f(g)-function in the gravitational and the gauge
field sectors displayed in table 1 and table 2 respec-
tively [note that our normalization is £ =
(all numbers in table 2 are to be muluphed by appro-
priate group invariants). The resulting sequences for
N=0, ..., 4 By(g)- functions are displayed in table 3
[note that the values for N =0,1 in O(N)and N =0

in U(V) cases make sense in the gravitational sector
only]. The correspondence here jg'shifted (AN = 1)
probably due to the fact that O(N) S UV — 1). Using
tables 1 and 2 we see that the growth of fn(g) with NV
is due to the positive contribution of the gravitino

(and A) in the gravitational sector or is due to the posi-
tive contributions of the gauge (and T, fields in the °
gauge sector (remarkably enough T}, supports the
asymptotic freedom in g) **,

#5 L et us remark that the above correspondence holds also
for topological infinities, see tables 4 and 5.

Bl

Table 3

N 0 1 2 3 4 5
87 =¥ i

o % B Le§ 10
/.
wo -8 | -2 -3 1"

gL+ ..

Finally, let us note that the total f-function for (1)
is obtained by summing that of the pure conformal
supergravity with the contribution of the scalar multi-
plet in L5 in (1). One can easily establish the latter,
e.g. in the N =1 case, by noting that the part of the
N =1 superconformal extension of the Einstein lag-
rangian [7] contributing in the F2,- and W-type infini-
ties is given by

L5E=~6D "Dy — 1XD1X, (34)
where
‘Dp =Du —%‘Mp » (DIH=DB+%'iAH ’

and ¢ and x belong to the N = 1 scalar multiplet. The
infinities for (34) are obtained with the help of the
Aj- algorithm [see also (8)]

Aby=0B(W-3FR), AB=i (35)
(note that the R¢¢*-term contribution in the diver-

* gences is suppressed due to the presence of W in the

total lagrangian, cf. ref. [8]). As a consequence, the
total §-function (1 + Ap) is positive (and increasing).
Thus all N < 4 superconformal theories obtained by
coupling Lsg in (1) and Lgy in (2) are asymptotically
free and not finite (cf. ref. [12]). However, there
remains an interesting possibility that the:.total g-func-
tion for &2 will be zero in a yet unknown N > 4 super-
conformal extension of (1), (2) [the pure N > 4 con-
formal supergravity will probably have negative f(c),
cf. (18), (30)~(32)].

Table 4
Contributions of different fields in the topological infinities Btop (bg = Btop* R*'R%).
Fields 2 3 1 3 0 T A c 7
12 T 233 13 1 ¥
o 1 -730 - 180 720 T80 - = =
411 173 3 | 1 2 21 1 1
uw W -1 - {56 726 T80 -i% 720 50 — 37
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}'ibles

Z5{8)-coefficients for O(V) and UY) theorles.
‘N 0 1 .2 3 4 S
oM HF B ¥ o -2 -4
um W F - -3 3o
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