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We discuss the cancellation of Weyl and local Lorentz anomalies in two-dimensional chiral N <2 supergravity—matter
systems, There exists a unique anomaly-free model with N = } supersymmetry which corresponds to the heterotic string (with
the critical dimension D = 10) in the same way as the anomaly-free models with non-chiral N =0, 1 and 2 supersymmetries

correspond to the string theories with D = 26, 10 and 2. The only two other anomaly-free models have chiral N =1

++ and

N =], supérsymmetrics and correspond to lwo new * heterotic” string theories with D = 2,

1. It was known for some time that there exist
only three consistent geometrical string theories (with
critical dimensions D =-26;:10-and-2)based on N =0,
1 and 2 supersymmetric two-dimensional actions. The
values of the critical dimension can be derived [1-3]
from the condition of cancellation of super-Weyl anom-
alics in the corresponding [4,5] d = 2 supergravity—
matter systems. Here NV is the number of supersym-
metry generators considered as d = 2 Majorana spinors.
However, the simplest (“V = 3 ") supersymmetry alge--
bra in two dimensions has a Majorana—~Weyl genera-
tor (see e.g. refs. [6—8)). Thus in addition to non-
chiraAl(N=1,_,N=2,,__)d =2 supergravities

there is a number of chiral ones *!: i

N=1., N=1,,, N=%iss,

N=§++—[ N % 2++++3 N=2+++- 3

\ (1)

(plus their chiral conjugates).

. The recent discovery of a new heterotic string
theory [9] (originally constructed as a chiral combi-
nation of the D'= 26 and the D = 10 string theories)
which'can be viewed as based on N = 3 d =2 super-

*1 We shall conside only tHeories with N < 2. It was noted
in ref. [3] that string theories based on N > 24 = 2 super-
gravities are unlikely to be consistent (they have negative
“critical dimensions”, i.e. it is impossible to cancel the
Weyl anomalies). ‘
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symniclry suggests a systematic study of anomaly
cancellation in N <2, d = 2 chiral supcrgravity —-
matter models. Anomaly-free models may correspond
to new consistent string theories * 2,

We shall find below that there exist only three
(Weyl- and Lorentz-) anomaly-free d = 2 theorics
based on N=3,, N = lyyand N = %H -. The first
theory corresponds to the heterotic string [9] with
the critical dimension D = 10 while the second and

“the third correspond to new string theories with D =2
and can be interpreted as “chiral combinations” of
the “non-chiral”’ D=2 and D=26andD=2and D=
10 string theories (the existence of these two theories
was already suggested in ref. [9]) #3. o

The sequence of the numbers of supersymmetry
generators of anomaly-free d = 2 supergravity models
and of the critical dimensions of the corresponding
string theories(N=0,D=26;N=1,D=10;N=2,
D = 2) suggests that an N = 3 theory may correspond

*2 By consistency of a string theory here we understand only .
the absence of d = 2 anomalies. We ignore the “nextlevel”
questions of boundary conditions and truncation of the
spectrum (e.g. we do not discriminate between the original
spinning string and Green—Schwarz superstring):, .

*3 Symbolically, the chiral half of N = 2, theorv s, eg.,

N = 1,, theory which is to be combined with the opposite -
chirality half of either the N = 0 theory or of the N = 1, _
theory (i.e. the N = § _theory).
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to'a string theory with D = 18 (spaces of dimensions
D=2, 10, 18, 26, ... have a number of common fea- .
tures, .g., admit Majorana—Wey! spinors, see also ref.

" [10]). We shall see that there is no anomaly-free
theory which can be interpreted as a string theory in
D= 18. 1t is the-heterotic string (in D = 10) that corre-
sponds to the unique anomaly-free d = 2 theory with
the N=1 supersymmetry

2. We shall start with recalling the structure of the

non-chiral N = 2, d = 2 supergravity [5]. The gauge "

fields are a zweibein e}, , two Majorana gravitinos X,
and a vector A, **. The gauge symmetries are the
general coordinate invariance (with parameter gmy,
the local Lorentz symmetry (8x,, = —3 Lo 3Xm ) the
Weyl symmetry (8ej;, = Aepy ) the ordinary and con-
formal supersymmetries (me =D, e +ppyt4) and
the “phase” and “chiral™ gauge mvari!ances Gxy, =
i(a = p3B)Xp»04,, = 0, + €,,, 0" ). Thus the
gauge fields can be completely gauged away at the
classical level. Assuming that a regularization prescrip-
tion respects the general coordinate invariance we can
group the anomalies in the two multiplets: “super-
Weyl” (SW) (A, ¢4, g anomalies) and “‘super-Lorentz”
(SL) (7, e, @ anomalies) *° . The SL (local Lorentz,
ordinary supersymmetry and phase) anomalies auto-
- matically cancel in non-chiral theories. To cancel the
SW-anomalies one is to couple the N =2 supergravity
to a number (D = 2 [3]) of N = 2 scalar muluplets
(x¥,y5, ¢ BA ) 6 J
We shall assume that the N <2 chiral supergravi-
ties (1) can be obtained (e.g. by chiral truncations)
from the non-chiral N =2, _ . theory. Then the SL-
anomalies also may not a priori cancel *7. Here we

*3 Hereq,m=1,2, A = 1, 2. p9 will denote the two-dimen-
sional Dirac matrices, p3 = 3. Throughout the paper we
ignore auxiliary fields. -

#5 The corresponding N = 1 and N = 3 multiplets of anoma-
lies are (A, ¢)-and (7, €).

¥ Herep=1,..,D)x and y are real scalars and ¢4 are two
Majorana spinors. Note that in the string interpretation x#
are space—time coordinates while y# are internal “charge”
variables. One cannot identify y ¥ with space coordinates
because the corresponding N = 2 supersymmetric action
[5] is not invariant under the O(2D)-Lorentz group.

*7 The local Lorentz anomaly ind = 2 was first computed in
ref. [11] (see also refl {12]). The local supersymmetry
anomaly for the N = 3,d = 2 scalar multiplet was studied
in ref, [8]. The abelian phase anomaly ind = 2 was dis-

cussed, e g, in refs. [ 12— —
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shall study only the cancellation of the Weyl and
Lorentz gravitational anomalics (their cancellation

- implies cancellation of all other SW and SL anomalies

if a classical theory is supersymmetric so that the
anomalies form the supermultiplets). In d = 2 the can.
cellation of the Wand L anomalies is equivalent to
the vanishing of the effective action computed ona
gravitational (e, ) background.

The finite parts of the effective actions for a real
scalar and a Majorana spinor are (see e.g. ref. [1])

To= 2lndem0——fm:| IR, Ag=—7,",

[RrO-1R=~[a2 dzz'(\/ER)zﬁal(Z.Z:)(\/fR}z'a
, : 2)
Tyj2=—3 Indet(ip™D,,,), = —§lndet:d =3 Ty,

Dy =y + i3, Wy = =1 L@ eh)e],
Ayjp=—D2+R/4. 3)

The effective actions for the graviton and the Majorana
gravitino are completely given by the general coordi-
nate and e-supersymmetry ghost contributions corre-
sponding to the gauges g,,,, = =¢2p 8 mn>s Xm = PmX
[1-3]): - '

r,=—jindetA;=—26T, |
Almn n —iRgm” ) . - ’ (4)
T3z =2Indet (ip” TP, )y =Indet &/, = 11T,

=—-V§1

-"31!'2="I(Dz “RI‘4 - (5]

The effective action for an (anti)self-dual antisymmet:
ric tensor (“chiral scalar”) and a Majorana—Weyl
spinor or gravitino gets an imaginary contribution due
the local Lorentz anomaly (cf. refs. [11,12]):

=11ndet(d,, i€y, 3")

1 ;

=057 ROIRFiv ™), (6)
Flfl: =-zmdet(ipm(bm):=ér‘01 [; (7)
Ty, =2X Indet (ip"TD,,), = 11Ty . (8)

Here w,, is the Lorentz connectlon and p3y, =Y,.
Notethat =D, +I_,s= 0.1,3. The total re-
sults for lhe coefﬁcicnts of the Weyl and Lorentz
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anomaly (i.e. the coefficlents of the real and imaginary _

parts of the effective action) in a theory containing
one graviton and chiral scalars, spinors and gravitinos
are

" ; i
W=30ie tng ) +alnype iy, )

+%(ﬂ3{2++ﬂ3!2 _)_26 3 (9)

L=ngy—ng-t 3 (1324 = 1yj22)
= ]1(!‘33,'24_ —ﬂyz _) .

Note that (as follows from (6)—(82) the coefficient of
the Lorentz anomaly for s = 0, §, $-fields is propor-
tional to the coefficient of the Weyl anomaly.

3. Now let us analyze the conditions W=0,L =0
starting with the N = 0 supersymmetry case. Aswe
can always trade a chiral scalar for two Majorana—

Weyl spinors, let us take ng,. =ng_=D.Then L=0 " _

implies ny o, =nypp_=nand W=D +n[2 —26=0.
For n = 0 we get the standard Bose string theory,
while n =2r+#0 corresponds to the Bardakci—Halpern
string [14]. ‘

Next let ‘'us consider the case of N = supersym-
metry. We can éouple the N = %,, 'supergravity multi-
plet (e, X,,+) to D N = 3, matter multiplets (x*,
¥2) [8] and to a number of positive chirality spinors-
(introduction of additional negative chirality spinors
breaks down the local NV = §, supersymmetry) **. An
even number of positive chirality spinors can of
course be'replaced by the corresponding number of
chiral scalars (ng 4 = 3 1, J2+)- For definiteness we al-
ways take the “singlet” positive chirality fields to be
spinots. Then (9) and (10) imply

W=D+3D+iny, +4 —26=0,
L=3ny;5,~3D—11=0. o (11)

The unique solution of (11)is D = 10, nyp+ =32
which corresponds to the heterotic string theory [9]#°.
* The contribution to W of the 32 Majorana—Weyl

*8 We use a “reducible” [7] N = 1, scalar multiplet; (xy, x_,
¥.) (x, is singlet under the N = %+ supersymmetry). Note
that the chirality of the spinor y is opposite to that of the
gravitino (i.e. to that of the supersymmetry parameter).
The cancellation of d = 2 Weyl and Lorentz anomalies in
the heterotic string theory was also checked in ref. 9],

1
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spinors is the sane as that of 8 real (non-chiral) sca-
lars. IT we consider these scalars as additional space
coordinates the resulting theory may look as corre-
sponding to a hypothetical * = I8 string”. However
the resulting theory is not frec of local Lorentz (and

“supersymmetry) anomalies (introducing “singlet” real

scalars we also break local NV = §+ supcersymmetry at
the classical level). Thus it seems to be no consistent

“D = 18 string”, the heterotigft_rir_lg_b_gjng.wc-uﬂly—"'

1

- string-theory based ona@i anomaly-free N = 3 super-

symmetric two-dimensional model.

The N = 1, supergravity is a chiral truncation of
the N=2,,__ theory: (ef,, x;:,,,Am,, = €pnAt). In
addition to the contributions of the graviton and
gravitinos (ny,5, = 2) the supcrgravity effective ac-
tion contains also the contribution of one chiral scalar
ghost corresponding to the gauge 4,,, = 0 (cf. ref.
[3]), i.e. effectively we have ng_ = —2. Coupling the
theory to D j"reducible ") N = 1,, matter multiplets
(x#, y &, Y#4) and a number of “singlet” positive

chirality spinors we get
W=(D+=}D—1)+éD+r‘,h”2++ll -26=0,
L=2-D+3n;p,-D-22=0, . (12)

and thus the anomalies cancel for D = 2,ny)74 =48,
Introducing instead the 48 Majorana—Weyl spinors _
24 chiral scalars we can identify the resulting theory
with a ‘‘chiral combination” of the N =2, D =2 ahd
the N =0, D = 26 string theories.

A similar analysis can be carried out for the N =
%++— case. The supergravity contribution here is the -
same as for the N =1, plus N =3 _ theory (with the
graviton contribution counted once). Introducing
matter multiplets (x*, y* , y#4, 4 ) and nips
additional chiral spinors we get a unique anomaly-free
solution: D=2, 11774+ = 24. The corresponding string
theory can be again considered as a “chiral combina-
tion” of the non-chiral N=2,D=2and N=1,D =
10 string theories.

The remaining chiral theories with N=2___ N =
2., and N=3, .. supersymmetry turn out to
have either Lorentz or Weyl anomalies. For the N = 2
theories this is easy to understand observing that
chirality does not matter for the Weyl anomaly and
that W=3 (D — 2) for the N = 2 supergravity coupled
to D N'= 2 matter multiplets [3]. To cancel the '
Lorentz anomaly we are to introduce additional _°
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Majorana—Weyl spinors, but they give positive contri-
bution to W making it non-vanishing even far D <2
The same conclusion remains tme for theN =3 -
case. .

[~

4._ We finish with several remarks. We have studied
* the cancellation of W- and L-anomalies which are
“representatives” of the two anomaly supermultiplets.
It would be interesting also to carry out an explicit
check of cancellation of supersymmetry anomalies in
the three W- and L-anomaly free models we found. If
the Lorentz and supersymmetry anomalies belong to
one multiplet *1° the additional positive chirality
spinors we introduced to provide W = L = 0 should
also contribute to the supersymmetry anomaly.
Hence it remains to be proved that, e.g., the D = 10
heterotic string theory is free of d = 2 supersymmetry
anomalies ¥**. An analogous remark can be made -
concerning the problem of the chiral gauge anomaly
cancellationin N= 1., and N= 3, _ theories.

Our starting point was the condition of cancella-
tion of the Weyl and 'Lorentz anomalies. However, it
was suggested in refs. [1,2] that relaxing the SW-
anomaly cancellation constraints and introducing at
the same time the corresponding “anomalous” degrees.
of freedom as additional variables one may define the
N =0 and N = 1string theories below the critical di-
mensions (D = 26 and D = 10). Here we would like to
note that an analogous suggestion (to relax the condi-
tion of cancellation of SL-anomalies) can be made
also for string theories based on chiral d = 2 super-
symmetries. Consider the Lorentz and Weyl anomaly
case using the following parametrization (general

#1° This should be as the classical theory is Jocally supersym-
metric. Note that it is the local supersymmetry of the
chiral anomaly free theories we discussed that differs
them from the Bardakci—Halpem models, where both
negative-and positive chirality spinors can be introduced
in an arbitrary way.

¥11 Thie point is somewhat mysterious given that no couplings
of the positive chirality gravitino to the positive chirality
spinor survive after trun nofthe N= 1, _ supergravity —
matter system to a/V = 5, system,
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coordinate gauge) of the zweibein [12]: €] =
€ P(8 4y COS T — €4y SiN 0), 8y = €228, (Pand 0
are W- and L-anomalous degrees of freedom). Then

[see (6)—(3)]

fREI IR —iv,, w’") = —4fd22 9,,0(3,,p +10,,0).
: (13)
Thus even if the Weyl anomaly (~fR E]"l'R) “cancels
out” the euclidean effective action contains an imag-
inary piece (~iJf 3p d0) corresponding to two scalar
degrees of freedom (the absence of ghosts depends on
the sign of the total Lorentz anomaly). This suggests
a possibility to have a unitary chiral d = 2 gravitation®
al theory with a non-vanishing Lorentz anomaly (for
an analogous proposal in the case of the chiral d =2
gauge theory see ref. [13]).
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