=

N . 0y,
// . p YC Sy
" Volume 163B, number 1,2,3 4 ﬂé}gypmsms LETTERS 21-Novgrber 1985 /

WY /Wé/ /67 @ s - @’ﬁ%

.NON-LINEAR ELECTRODYNAMICS FROM QUANTIZED STRINCS_J

. ES. FRADKIN and A.A. TSEYTLIN j/
P.N. Lebedev Physical Institute, Leninsky pr. 53 Moscow 117924, USSR e

.Received 6 June 1985 : ) & B
1 ,__—-————-——*—“

We compute the eflective action' for an abelian vector field couplcd to the virtual open Bose strin g The pmblcm is cxaut]y
solved (in the * tree” and “one-loop™ approximation for the string 1he0ry] for the case of a constant field strength and the
number of space-time dimensions D = 26. The resulting tree- level eﬁ'ecuve lagrangian is shown to cmncxde with the
Born-Infeld lagrangian, [det(8,, + 2na'F, )72, :

1. Introduction. In view of the present interest in string theories as candidates for a consistent
. unification of all fundamental interactions (see e.g. refs. [1-4]) it is important to gain deeper understanding
~ of their properties, in particular of the non-perturbative ones. Within the standard approach to (super)

string theories based on on-shell amplitudes on a flat background (or on a non-covariant action for string:
functionals) it is difficult to formulate and to solve the ground-state (compactification) problem and tc
establish connection with an effective field theory approximating string dynamics. Recently, we have
propused a new formulation of a string theory which is based on an off-shell covariant effective action I’
for an infinite number of fields corresponding to excitation modes of a first-quantized string [5,6). T is
simply a generating functional for al! possible (off-shell) amplitudes on an arbitrary background.
Extremizing T' with respect to the background fields one can establish the true ground state of the theory.
I' computed in a proper approximation is directly the action of an effective “low-energy” field theory.

As was shown in ref, [5] the expansion of I' in powers of derivatives of the fields (in the case of the
closed Bose string theory) starts with the Einstein term (£) for the metric G,, and the standard kinetic
teérms for the “dilaton” ¢ and the antisymmetric tensor 4,,,. We found also a non-polynomial coupling of
plo Fm which (for D = 10) is exactly the same as presenl m D=10 supergramy [5,6]. To establish such
results within the standard S-matrix approach it would be necessary to compute an infinite number of -
amplitudes with arbitrary numbers of external gravitons and dilatons (oniy the three-point amplitudes.were
previously computed [7]). Our approach thus makes possible to do calculations which are non-perturbative
in a number of external fields.

To provide a consistent solution to a ground-state problem it is necessary also not to expand in a -
number of derivatives of fields (e.g. not to assume «’® << 1), It is likely that employing o-model technique

(cf. ref. [8]) and using some particular Ansitze for the background fields (e.g. 2= const, F,,, ~¢,,,, etc)
one can find expressions for I' which are non-polynomial in the curvature, E ., et

~ Here we are going to demonstrate how non-perturbative (in the number of fields and derivatives) results
for the effective action can be derived in the case of the open Bose string theory. We shall study the
dependence of T on the vector field A, of the open string spectrum assuming its strength F,; to be
constant*!. Both the “tree” and “one- loop contributions to I'( F) will be computed in an exact way
(never using a’ — 0 approximation). In the *“tree” approximation I'(F) coincides with the Born--Infeld
action [9). The computation of T'(F) is a string-theory analog of that of Schwinger [10] for a particle theory
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For mmphcny we shall consider oriented U(1) open smngs in D=26.
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case. We note again that to establish our results mthm the S-matrix apbrg&ch one is to sum conmbunons
of an infinite number of amplitudes (only three-point amplitudes were prcwousiy compuled for G=U(n)

[11 7}) : . . . —

2. General relations. The (euclidean) eﬂ‘ ective action corresponding to the theory of i mteractmg open and
closed (onentcd) strings is defined as follows [5,6] :

oAy By ]= T ef(dgalidxletu(pe) R 1
" x=1,0,... " _ .

I,= 4m f d%z\[g g%, x*3,x*, | ' o - - )

I‘_=.fa. dr [eqb(x(:))+1x*‘A (x(!))+e %*%*B,,(x (1)) + ] ' ‘ (3)

For mmphcsty we ignore non-trivial background values of the fields of the closed string sector
(Gﬂ, = 6”,, @, . = 0). The summation in (1) goes over the Euler number x of a virtual string world sheel M?
which is ar. oriented compact two-manifold with boundary (M? has the topology of a disc~in a “tree”
approximation, of an annulus—in a “one-loop” approximation, etc.). In eq. (3) x*(¢)= x*(z(1)),
w=1,..., D, where z9(¢), a=1,2, parametrizes the boundary M. The metric on M is e?(s)=
8.5(2(2))2°2°. The fields o, A, B, correspond to the modes of the open string spectrum (i.e. to the
scalar *tachyon”, the gauge vector, the symmetric tensor, ...) and take values in the algebra of the internal
symmetry group G = U(n) (the fields are taken to be hernmean #2_ P in (1) indicates the ordering along the
boundary. Varying I' with respect to the fields (and putting them equal to zero) it is easy to check that the
resulting amplitudes contain the standard Chan-Paton factors. ¢ in (1) is related to the dimensionless
coupling constant of the open strings g, = e ~°/2 For correspondence with the standard normalization of
the amplitudes one is also to multiply the fields in (3) by g,. Note that all terms in (3) [in (2)] which contain
an even number of e [an odd number of ¢*°] are to be taken with “i” in ordcr to get a real total string
action in Minkowski-space formulation.

Now let us take G =U(1), 4,+0, ¢, B,, =0 and D = 26. For D =26 the mtecral over two -metrics in
(1) reduces ¥* to a finite- dlmcnmonal mtcgral over Teichmiiller parameters )\1, )\ ~ [14,15] (x=1:"
N=0; x=0: N=1, x<0 N—— —3x). Thus we get

1‘_=):ef'XIdp(A)fe-’f"’t[dxﬂ], dp(J\)Ed)\l...lep(?kl,...,AN)., ro - (4)

where g includes the contribution of the ghost determinant, correspondm g to the gauge g,,= 8.
(8.5(A1,--., Ay) a “standard” metric on M? defined to have a constant two-curvature and zero geodesic

#2 In the case of non-oricnted strings one is to integrate over all orientable and non-oricntable two-manifolds. Slicing sich manifolds
by plancs one finds that there are exactly seven types of local interactions of non-oriented open and closed strings [12.6]. Note also
that in this case the fields in (3) belong to different (symmetric and antisymmetric) representations of SO(#) or USp(n) (1]

¥ This reduction is strictly true for a free partition function T'[0]. For non-vanishing background ficlds the integral over the
conformal factor p(g,, = ¢**£,,) does not decouple even for D = 26. A predcription one uses to get rid of the dependence on p
defines an off-shell extension of the amplitudes (cf. refs. [5,13]). When on]y A, #0in (3) the “p =1 gauge” is the most natural
prescription (when onlyA # 0 the integral over the constant.part of p, i.e. 1he area of M2, automatically decouples). Furthermorc.
‘when A4, satisfies an “on-shell” condition (e.g. = const.) the results should not depend on a prescription used.
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curvature of M [15]). We shall split x* in (4) on a constant and non-constant part, x* = y* + £*. Then

f[dxs*]e-*z—’x=fdﬂyf[dgﬂ]exp{—Z%fdzz\/g?(agﬂ)z—i'{d;g'n,qﬂ(ﬁg)},' S

where £#(z) is a non-constant function on M2, satisfying the Neumann boundary condition. Now let us
integrate over £#(z) in all internal points of M2, i.e. reduce (5) to a path integral over the boundary. To this
_end we introduce a set of (non-constant) fields n%(t,), A=1,..., p, defined on simply connected
components C, of the boundary, M =U%_,C, ([om= ZAfé‘) and insert in (5) 1 =11, f[dn418(§¥|c, —
n%). Representing 8-functions in terms of path integrals over »4(t,) and carrying out gaussian integrations
(first over §*(z) and then over »*) we finish with the result (we rescale ¢ and 7 by vV27a’)

f[d&“]e"*"ll flam]_f[dnﬂl e~ 116G = h[Vima'n]

16 =¥ [de,depmi(L)Gai (L o) nb(15), - (6)
A B .

where G~! is defined as follows. One first finds the Neumann function N(z, z/) for the Lapiac‘e.‘operator

" 0=2,/88°8,), —ON = 8(z—z'), then computes the matrix of its restrictions on the components of

M, G p(t4 t5)= {N(z(2,), 2'(t3))} and then finds the inverse, G™'\G=1,1={§,58(2, = tp)}
Expanding A, in (5) is powers of §{ we have :

A8,y +8) = 4E,(5) [ arét + 30,E, () fardrgrgh s o Cow (7

Thus in general T = [dPy.#(y) where % depends on F,, and all powers of its derivatives at y; Now let us
make our central assumption that F,, = const, i.e. let us concentrate only on the dependence of I on F,.
Then the relevant path integral becomes a gaussian one ' '

— i_ = ; PR
ZLF )=~ f[dn#]exp(— 21_]G"1n+ Eﬁ"]d’:ﬂ”'ﬂ'), F,=2naF,. : L | (8)
Now we can make a O(D) rotation to put F,, in a standard block-diagonal form: -
0 A
_'fl 0 ; 0 i
F,= , n=D/2, f.=2mdf}, . . o (9)
o . -0 /.
-f, 0

n

and consider each block of (9) separately in (8). For example, for the first.block we have: Gl
+ 192G~ 'p* +if, fdr'n* and thus may integrate over 7. As a result '

. D73 e :
Z(F)~ kli f[dﬁ]exp(—gqc“lq - 1f2nGn), T o (10)
where now '.q’ does Inoi carry a spacetime index. The final expression for 1" ?s:j : :
M(F)= T e[ du (N ZOZ(F), Z(0)= [lax]e~t, L, (1)

, ;/z o on | Ll ; = . ¢
Z(F)= kI:[}f[dﬁ}e—%ﬁbiﬁ= H(aete.kr__‘f,__ A =t+f266, . ()

where G = (d%/dtdr’)G(t,1") (G and A are defined on non-constant functions).
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3. Tree approximation. For x =1 the world sheet M?Z can be taken to be a. unit disc on a complex plane,
The corresponding Neumann function is (see e.g. ref. [16]) '

N(z,2) = =(1/2n)In |z = 2’| |z — 7], I 1)
and thus _ , . ' _
G(6.8")=N(e",e®)=—(1/27)In(2—2cos{), {=60-6', 0<8<27. (14)

To compute det A, in (12) we use Fourier expansmns on the boundary circle, 9(8) =
v=_(1/ V= Xa, cosm8 + b, sin m@). In view of the important formula [17]

-] bm
1n(1+b2—2bcos§)- -2 ) —cosm{, bg]l, ~ (15)
=1 ’ '
we find
1- 1 1 = ¥
=— E —-cosms‘,’, G=G'=— z mcosm¢,
T m=1 m ‘JT -
" 1 . .
G-G=— Z‘, cosm{=8(8-8"), A, =1 +f*)s(§) ' (16)
m=1 ) 2
where & is a function defined on non-constant functions. Hence Z(F) in (12) is:
: D2 w D2 — ' .
zZ(H=T1T10 +f = [1(+72)" , S

Here we employed the standard prescription for the definition of one-dimensional path integrals based on
the use of the Riemann {-function (see e.g. ref. [18]):

f[d??le X ""f 1_[ da,db, t’._c{‘: +bn) o H ¢ l=g30nc_ 172 - ! X (18)

me=1] m=1

Recalling (5) and (9) we can put the “tree” contribution in (11) in the following form
l"()"')m,e = Zog_za'_Dﬂdey [det(8 + 21rrx'F )]1/2 : ' . o - (19)

where Z = const. is the free partition function for a unit disc and g, =e"*/2. Eq. (19) comctdes w1th the |
D- d1men51onal Born-Infeld action [9] **. Expanding (19) in powers of F,, :

T(F e = [a% [const.+(1/487) 2+ 0(a?F'/g)], g~ go(a) "™, A )

we find agreement with the result of the &’ — 0 expansion of the amplitudes {11,7] ( F3-term is abscnl in the
abelian case). '

It is instructive to compare (19) with the corresponding result for the casé of particle dynarmcs {]0]
Consider a charged scalar Ioop in an external electromagnetic field. Then

bt = BT --f -——Z[A] ZP[A]=f[dx“]cxp{—

™ 2m: L2 . 2z .
77 ), déx —1]{;‘(]3*“{{#)_.- (21)

-~

4 In D = 4[det(8,, + £,/ = (1 + 1 E2 + L(F,, F2*)*]'/% This lagrangian for non-linear electrodynamics was singled out in ref.

[9] becausc of its gecometrical appeal (for its connection with unified theories see ref. [19]).
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where T is the length of a closed path (e ~ T in the proper-time gauge). Assuming 4, = — L., x” we can
-put Z, in the form (8) with it _ ¢
. 7 d? 1 = -
_1=__—....._...5 8—-0"Y= — 2 26‘—8' , T
¢l = 7agpad(0-0)= 05 L micosms, § | ‘

i =] v
. [cf. (16)]. We conclude that in contrast with the, string case here G is ror scale-invariant (this is the

reason why the integral over the length of the path does not decouple in the particle case). Computing (12)
we: get the well-known result (cf. refs. [17,19))

Dys2 fk.
4)~ I Sty S

4 One-féop approximation. The world surface for x = 0 can be taken to be a flat annulus with the
. radius of the internal circle equal to @ < 1 and the radius of the external circle equal to 1 [the corresponding
Teichmilller parameter A in (4) is In a). The Neumann function for the annulus is [16] Pai

. 1 (.
N(;—z')= - E;(_ln!z—z’“z-—'z’"ﬂ

+ ¥ Wn[j1=a?z 21 - a*z’/z||1 - a¥"zz’||1 - a’"/z.?’f]). : '_ e (23)
=1 ! .
The matrix of boundary functions G in (6) is obtained by setting z and 2’ equal to " or de'? (here we can
use. the same angle @ to parametrize both boundaries, { = § — 8”); g '

Gy = - —2—1;(@(1)+2 3 Q(az")), Q(b)=1In(1+5%—2bcos¢),

ne=1

“ A= % : 1

Gp==-5-10(a)-lna+ ¥ [0(a®*)+0(a*Y)]|, Gy=Gy~Ina,.
2a : ok ' 27 _
: - g - , o u '
Gy = "L‘;(Q(UT“Q(“Z)"‘ b3 [2Q(02")+Q(a:"+')+Q(aznﬁz)])_=Gu- : (24)
' ' noe=] . . ‘ . . 5 .
Mak'i ng use of formula (15) and £2.,6" = b/(1 — b) we can easily compute the Fourier expansions (recall
that' G is defined on non-constant functions) . . to
1 =1 o A, B\~ 1+a?m - 2q"M

G(8,0")= — 2 , R =" hall = — = .

‘( ] ) mg] ﬂmCOS.m; 2 (Bm Am) L T alm Bm 1—g2m (25)

. Then ~

W 1 = 1 = ; * g
G== 3 mQ,cosmf, A(0,0)=— Y A¥cosme, < (26)
R =] =1 ‘i

- [1+472(4%+ B2 2f24,,B
._’\(:;]= fk-( m m) _fk m~m . . . (2?).
> kazAmBm_— 11 +fk1(Ar2ﬁ+anr) - ]

Hpncé Z(F) in (12) is given by e ,
€ 8 D2 & D2 o T N R
Z(F)=IT T7 [detaR] ™= T1 I_Il[(1+p.iff)(1+p;’ffl_,]\_ e % s c (28)

A
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Z(F)= T1 [det(8+puF)det (847 B)| ™ pamtes. ()
One con :lso rewrite (28) as [y, = (f¢ — 1)/(f2 + 1)] | | ]
_ Dy2  ® vz =1, o ", S 4 ng
Z(F)= J\_I:[l [(1 +f;)'£[l (1—m) ](11 tanh(mlna)| . (30)
. The part_ition function on the annulus with'Neumann boundary conditions is [20,21]
z(0)~[P(a)]®, P(a)= a“/”ﬁl (1—a2m)7! ﬁ [2sinh (mna)] ~}
[s(-1)=-112]. - - . NN

The measure y in (4), (11) contains the contribution of the ghost determinant. (compuled wnh ““mixed”
boundary conditions [13])

Z,=der'0~[P(a)] "% ' '- ' (32)
Observmg that the natural measure of integration over conformally inequivalent domains is dA = da/a
[20] and combmmg all the factors we find for the one-loop contribution in (11) (D =26)

1wp=Vf(;?El(‘1—ﬂ'" “Z(F) o ey
' i o 13 o T T T :
= Vf(; %i:-n[[l [(1 = a?m)*(1 + a2m) ] kljl [(1 +12) T_Il (1 ST S— )] (34 ;

cosh? (mlna)
~~where .V ~ (')~ ?/2[{d®y. The equivalent form of (34) is v

Tigep=— 1Vf dA n smhz(m}\)n[(1+fk 1_[ [cosh? (mA) —v2]~ } : (35)

. me=1 m=1
The measure of integration in (33) is the same as found in the operator formalism for the one-loop
amplitudes (see e.g. refs. [16,22,1]). As is clear from (34) the integral has a cut singularity at a = 1*° and ;
diverges as [da/a’ at a =0 (these properties are agam the same as found for the tachyon' scattering :
amplitudes). The infinite part is proportional to [T} (1 + /2)= det(8,, + F,,). This expression is the '
square of the tree result (19) and thus it appears as 1f the infinity cannot be absorbed by a renormalization |
of the coupling constant g, and &’ (in contradiction with expectations based on analysis of the amplitudes
[22,23)).

The reason for the above squaring” of [det(8,, + F,,)]'/? can be traced to the fact that the annuilus has
two boundaries while the disc has only one. However lhe inner boundary should disappear in the limit
a — 0. In fact, if we introduce a short distance cut-off by substituting In(|z — z’| + ¢) for In |z = 2| in (23).
and take a — 0 before ¢ — 0 then G,, in (24) vanishes for a=0. This is equivalent to putting the
22-element of Q,, in (25) equal to A, for a # 0 and equal to zero for a = 0. With this prescnption the
a— 0 limit of Z(F) and hence of (33) is proportional to the first power: of [det(8,, + F,,3]'/% The,
one-loop corrected effective action will then look like (A — cc) ' .

= V{? [det (8,, +..2ﬁ'a'P;w)] Y2 4 e [det (8,,+ 2-m'f;,)] + finite pafl} : f (36)
0 : : ' i '
and thus will be renormalizable by a redefinition of g, ¥,

# The structure of the -r.méui:u:lly at a=1iscxp(w?/3e)exp(l/4e)TL ((hE = Zrb* Noe=1- a b,, = arecos{l — RF2(1 +.f2)" 1]
There is an interval of values of f,'s in which the singularity is absent.
® We understand that the above prescription of taking the limit"Z — 0 may scem dubious under the natural condition that the radius
of ' =" iner hole should be always larger than the short-distance cut-off on M2. The | important question of the connection between
the a —~ 0 limit and the removal of the & cut-off on the world surface deserves further study
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. 5. Concluding remarks. We find it remarkable that the Born-Infeld lagrangian is the exact (tree-level)
solution of a constant external vector field problem in the open string theory *7. It is interesting that the
Born-Infeld-type actions were already discussed in connection with string theory in ref. [24] (it was noted
there that non-linear actions may admit non-trivial vortex solutions with /[det £,,1'/? giving the Nambu
action). Maybe there should be a kind of a bootstrap and the effective field theory action corresponding ta
the fundamental string theory should have string-like classical solutions (“solitonic” strings).

There are a number of possible generalizations of our discussion. We may consider the non-abelian case
Representing the path-ordered exponent in (1) as a path integral over the auxiliary Grassmann degrees of
freedom (see e.g. ref. [25]) :

ercxé(—-ifdzfc"A,;) ~fd¢d$exp [—ifd.r (P +294,9)], "

we conclude that the problem is no longer exactly solvable and thus the best we can do is a perturbation
theory both in  and n* [the starting point is again €q. (6) and hence the only difference from the particle
case is again in the structure of the “kinetic” operator G} ' :

It is relatively straightforward to generalize our results to the case of fermionic strings with gauge group
G = U(1) or SO(2) [the new interaction term is fd:(t,b"\b'ﬁl,) and thus the problem remains exactly
solvable if F,, = const.]. We can also consider directly the case of superstrings taking F,, to correspond to
an abelian subgroup of SO(n) or USp(n). The relevant interaction lagrangian was recently constructed in
ref. [6]. The only terms contributing when F,, = const. are Jdi(x*A, — -}iﬂy{“"’&f;,ip). In the light-cone
gauge the second term reduces to /dt8y'/y~6F, ; and thus the path integral over § becomes gaussian; We
anticipate that the contributions of non-zero (non-constant) modes of x/ and. @ cancel due to
supersymmetry and thus T'(F) is completely given by the integral over the zero mode 6= const.
Comiputing this integral with a proper measure we get '~ VF;?, ie. the standard Maxwell action and not
the Born-Infeld one, : '

To find the one-loop correction one has also to include the Mdbius strip contribution. Eq. (33) should
then take the form fdaa™'Z(F) with a logarithmic divergence at a = 0 (cf. refs. [1,12]). The infinity will
probably cancel for the number of abelian components of F,, equal to the dimension of SO(32) [12].

An analogous problem can be studied also for the closed heterotic, superstring [4]. The action
corresponding to the coupling of the heterotic string to a gauge field A » belonging to an abelian subgroup
of SO(32) and having F,, = const. is given by : : ;

. t

A 2 . 2,.7 SFIfye!]
1= [ @[ (a,0) +igmpyr +ifipy), |
D,=9,+1B,, B = FJ(x"3,x* +ig*p,y"), - ' | (37)

where p, are the two-dimensional Dirac matrices Y* and ¢/ are two-dimensional Majorana-Weyl spinors
of opposite chirality. It is possible to integrate out {’ getting instead a chiral generalization of“ the
Schwinger term (Indet Py, = —(1/87) [d%20,9(3,9 +1d,9), B,= 3,9 +¢,,3,p). However, the result-
ing expression is fourth-order in x* and y* and hence the remaining integrals are non-gaussian. Yet.it may
happen that the problem has an exact and non-trivial (non-Maxwell) solution being a problem of
two-dimensional QFT. - : o

*7 Let us recall that the lBom~Infc1d-1ype actions provided the first cxamples of non-lincar electrodynamics. They were followed by
the Heisenberg- Euler action derived from QED. The later action was found to be a piece of the Schwinger action which may be

. considered as an exact consequence of particle dynamics. A historical paradox is that the “prototypical” Born-Infeld action
follows itself from the string theory. ; : t .

i
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