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An alternative version is proposed for operatorial canonical quantization of dynamical
systems subject to irreducible first- and second-class constraints, and which exploits a modified
way of defining the extra degrees of freedom needed for conversion of the original second-class
constraints to (effective) first-class constraints. The alternative version considered is shown to be
canonically equivalent to the previously suggested formulation. It is also shown that both
formulations belong to an infinite class of canonically-equivalent solutions of the basic generating
equations which correspond to the most general effective constraints.

1. Introduction

In the works of the two first-named authors [1,2] a general formulation was
suggested for a method of operatorial quantization of dynamical systems with
irreducible first- and second-class constraints. The operatorial quantization is based
in the idea of conversion of the original second-class constraints into effective
first-class constraints by considering some additional degrees of freedom needed to
this end. After the effective first-class constraints appear, they are subjected (along
with the initial first-class constraints, if any) to the standard procedure within the
general method of operatiorial canonical quantization of dynamical systems with
first-class constraints [3, 4].

In the recent paper [5] the authors considered an alternative version of the
formulation of canonical quantization of dynamical systems with irreducible sec-
ond-class constraints. This formulation also included the conversion of the con-
straints of second kind into those of first kind as its basic method. The difference is
that now the way of introducing additional degrees of freedom was modified. The
modification reduced to the strict requirement that the effective first-class con-
straints be abelian. The effective constraints and the hamiltonian were sought for in
the form of a series in powers of additional variables, with the zeroth terms
coinciding with the original second-class constraints and the original hamiltonian,
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respectively. The quantization was performed not at the level of operators, but
within the formal path integral, the basic equations being formulated in terms of the
classical Poisson brackets. The general case, when the original first-class constraint
might also be present in the theory, was not treated.

In the present paper we propose an operatorial extension of the scheme suggested
in ref. [S]. When doing so we also admit that the original irreducible constraints in
the theory are of first and second kinds. In sect. 2 the operatorial version is given to
the modified method of the introduction of additional variables and of the construc-
tion of effective first-class constraints. In sect. 3 the operator-valued generating
equations of the gauge algebra of the original first-class constraints are formulated
in the presence of second-class constraints. In sect. 4 the full unitarizing Hamilto-
nian is constructed. In sect. 5 the case of pure second-class constraints is studied in
more detail. In sect. 6 explicit expressions for the generating operators of the gauge
algebra, as well as an explicit form of extended involution relations, are given in the
presence of second-class constraints, referring to the gauge theories of rank-1 as an
example. In sect. 7 the general structure of solution of the generating equations of
arbitrary-rank gauge algebra is considered. In sect. 8 it is shown that the operatorial
formulation attained is related through a canonical transformation with the formal-
ism proposed earlier in refs. [1,2]. In the concluding sect. 9, some mutually
complementary peculiar properties of the above two formulations are discussed and
it is shown that they belong to an infinite class of canonically equivalent solutions
of the basic generating equations, that corresponds to the most general effective
constraints.

Notarions. Similar to the previous papers, we are exploiting the following basic
notations. The grassmanian parity and the ghost number of a quantity A are
denoted, respectively, as €(A4) and gh(A). The supercommutator of operators A and
B is denoted as

[A, B]=AB — BA(—1)<®, (1.1)
All canonical pairs of operators are written in the standard way
(0% 2), «(Q)=c(B), eh(Q*)=—-gh(P).  (12)
The only nonzero equal-time supercommutators for them are
[04, P;| =indf. (1.3)

If the ghost number of some canonical pairs, when first defined, is not indicated, it
should be understood as to be equal to zero.
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2. Conversion of second-class constraints into effective abelian
first-class constraints

Let
(¢ p,), e(d)=¢(p), i=1,...,n, (2.1)

be canonical operator pairs of dynamical variables of an original phase space.
Further, let, in a dynamical system with the hamiltonian Hy(q, p), the first-class
constraints

(¢, p), (T))=¢,, a=1,..,m, (2.2)
and the second-class constraints
T/(q.p), «(T/)=e¢l, a=1,..2m", (2.3)

be given in terms of the original operators (1.1). All the constraints are assumed to
be linear independent.
Following refs. [1,2], let us consider the new operators

o, e(®) =€/, a=1,...,2m", (2.4)
such that
[®2, ®8] = ihw, (2.5)
where »*® is a constant simplectic matrix
e(w*?) =€, +e€f, whe = —w"‘ﬁ(—l)t‘,',‘é'. (2.6)
Let us define, further, the operators
T.(q,p,9), e(T,)=¢”, a=1,...,2m", (2.7)
by the equation
[T..T;] =0, (2.8)
and the condition

T::(q’ p,0)=71,”(q, P)’ (29)

where the second-class constraints (2.3) are involved in the r.h.s.

Egs. (2.8) and (2.9) convert the original second-class constraints (2.3) in the
original phase space (2.1) to effective abelian first-class constraints (2.7) in the direct
sum of the phase spaces (2.1) (2.4). At the classical level, i.e. in terms of the Poisson
brackets, eq. (2.8) was suggested in ref. [5].
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3. Generating the gauge algebra of first-class constraints

Let us now define the canonical operator pairs of ghosts
(¢, 2), a=1,..,m, (3.1)
e(C?)=e(P])=e,+1, gh(C”)=—gh(&F))=1, (3.2)
and the generating operators
2(¢,p,9,C, %), H(q,p,9C, %),

using the equations

[2,2]1=0, [2.7;]=0, (3.3)
((2)=1, gn(2)=1, (3.4)
[#,2]=0, [H, T]=0, (3.5)
e(H)=0, gh(H)=0, (3.6)
and the conditions
2(q, p,0,C",0)=T)(q, p)C", (3.7)
H'(q, p,0,0,0) = Ho(q, p). (3.8)

Effective abelian constraints (2.7) are involved in the second equations of egs. (3.3)
and (3.5), while the r.hs. of egs. (3.7) and (3.8) contain the original first-class
constraints (2.2) and the original hamiltonian, respectively. Egs. (3.3)-(3.6) are
generating equations for the operator gauge algebra of the first-class constraints in
the presence of second-class constraints.

4. The unitarizing hamiltonian

Let us define now another set of canonical pairs of ghost operators

(Cr/a’ ‘@au)’ a=1,...,2m”’ (4.1)

e(Cr)=e(Pr)=e/+1,  gh(C) = —gh(F)=1, (4.2)
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and also the canonical pairs of antighost operators relative to egs. (3.1) and (4.1)

(#2,C), a=1,....m, (4.3)

«(2)=e(C)=e,+1,  gh(#)=—gh(C)) =1, (4.4)

(#,Cr), a=1,...,2m", (4.5)
«(P)=e(Cr)=el+1,  gh(#) = —eh(CY) =1, (46)

and, finally, the canonical operator pairs of dynamically active Lagrange multipliers
(N, ml),  a=1l,...m, e(N)=e(m))=¢], 4.7)
(A7, a7y,  a=1,...2m", e(N)=e(n))=¢€. (4.8)
The full generating operator is given as
Q= +mP+ Q" +a)P"°, (4.9)
where £’ is defined by eqgs. (3.3), (3.4) and (3.7), and the designation is used as
@' =TC"", (4.10)

effective abelian constraints (2.7) being involved in the r.h.s. of eq. (4.10). Now we
are in a position to define the full unitarizing hamiltonian by the standard formula

H=H +(ih) '[¥, 2], (4.11)

where H’ is fixed for egs. (3.5), (3.6) and (3.8), 2 is defined as in eq. (4.9), while the
operator ¥,

e(¥)=1, gh(¥)=-1, (4.12)

fixes the gauge as
V=PN+C)X "+ PN+ CUx"™. (4.13)

The full hamiltonian (4.11) determines the time evolution of the dynamical system.
The genuine physical states are BRST singlets

QI®y=0, |®)+ Q|anything) (4.14)

with zero ghost number.
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5. The case of pure second-class constraints
Let us study in more detail the case when there is no original first-class

constraints (2.2) in the system, so that we deal, in fact, with the second-class
constraints (2.3) alone. Then one has in eq. (4.11)

Q=TLC"*+ a/P"*, (5.1)
V=N + Clx", (5.2)
and also
H'=H'(q,p,®), [H, T]=0, (5.3)
H'(q, p,0) =Hy(q, p). (54)

Let us seek for a solution to equations (2.8) that determines the effective abelian
constraints (2.7), by expanding them in a Weyl-symmetric series in powers of the
operators (2.4)

3
T.(q,p,9) =exp(4>“ )

ag*
o0
X E Xaa,,...al(q’p)q)al"'q)anl(p=0' (55)
n=40
Here, the variables
o, e(9*)=¢’/, a=1,....2m" (5.6)

are the classical counterparts of the operators (2.4).
The coefficients in eq. (5.5) have the antisymmetric property

X, Loy = Xa(a,,...al) ’ (57)

aa, .
with the symmetrization operation

a,...a; > (a,...qp), (5.8)

n

defined for any quantity K, , as

&,

Ko ay=Kp gSon, (5.9)

«,...0

«— —

d
do

n1Sh b= b  of— (5.10)

~ p
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It follows from eq. (5.9) that
X(q,p)=T.(q,p). (5.11)

The substitution of expansion (5.5) into eq. (2.8) gives rise to the following relation
for the coefficients

Cupr,.y=0,  n=0,1,..., (5.12)

where

n 00 !
©aﬂy,,...ylE Z ZCI:I(%Zh)

m=0[=0
X Xy opprtro 8 Xg (= 1) 5
_XBY,,---YM@I---&X:X”.617,"---71(—1)%(%,“"‘)} ’ (5'13)
n—m+)(m+1)!
- Jilm+ Dt (5.14)
" (n—m)'m!
s P Ll PR G 1)Hoh D, (5.15)
P
2= Y €. (5.16)
Jj=q+1

Assume that all the coefficients in the expansion (5.5) are known. Put, then, an
operator A(q, p, @) into correspondence with the operator A(q, p)

A(q.p)—4(q,p,®), (5.17)

using the equation
[4, ;] =0,  4(q,p,0)=4(q,p). (5.18)

To find a solution of this equation, and Ansatz analogous to the Weyl-symmetric
expansion (5.5) is also used

- d ©
A(q,p,<1>)=exp{4’“ aq)a} XY, J(a.p)e 9%,  (5.19)
n=0

where
Y

Ap...0y = Y(a,,‘.‘al)’

(5.20)

Y(q,p)=A4(q,p). (5.21)
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The substitution of expansions (5.5) and (5.19) into eq. (5.18) produces the follow-
ing the following relations for the coefficients

Spr,.. =0, n=01,..., (5.22)
where

_XBYn- slyal"'slym“.ﬁ(_I)C(A)((ﬂ+(m)} s (5.23)

cYma18y

! ’
YYI“'Yls 5 = leﬂl.“wY/B/}%’“-Blam.”s](_1)2k=1(ﬁk(€(fi)+1+(2). (524)

e

Given all the coefficients in expansion (5.19), solution to egs. (5.3) and (5.4) can be
represented, in the sense of the correspondence (4.17)-(4.19), as

H'(q,p,®)=Hy(q,p. ). (5.25)

6. The case when original first-class constraints are also present and
generate the rank-1 gauge algebra

This case is of most practical interest for the majority of known gauge systems.
The corresponding solution of the generating equations (3.3)—(3.8) is written in the
Weyl basis relative to the ghosts as

@ = /¢ + Y PIUpCC + CPPITEC™ + CCPP0L) (1%, (6.1)
H' = Hy+ }(ZVeC™ — P08 (-1)%). (6.2)

Here the extended structure operators

T,=T/(q.p.9), Up=0Ui(q,p.®), (6.3)
ﬁo=ﬁo(q,17,‘1’), V;:V:(q,p,(b), (64)

correspond, in the sense of egs. (5.17)—(5.19), to the original structure operators

T,(¢.p), Uslq.p), (6.5)

Hy(q,p), Vi(q,p), (6.6)

respectively.
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The substitution of egs. (6.1) and (6.2) into equations (3.3), and (3.5) results in
relations for the operators (6.3) and (6.4). We only explicitly give here the extended
involution relations, that appear in the lowest order with respect to the ghosts

[fa’, ;] = %ih(fc' Je + U, T (- 1)(ez+eg+1>e;)
+(4in)*[Ug,, 4] (— 1), (6.7)
[Hy, Ty] = Lin(Fvs + Ve (—1) 4+ %)
+(4m) (75, 081 (- )%, 68)

7. Structure of solution of the generating equations in the general case of an
irreducible gauge algebra

In the (most general) case of an irreducible arbitrary-rank gauge algebra the
solution of the generating equations (3.3)—(3.8), in the Weyl basis relative to the
ghosts, is sought for in the form

2 =D%|,, H =DH|,, (7.1)
where
ad - d
DEexp{C"‘ 9c + 2] 39—}.}’ (7.2)
and the variables
(ce,2,), a=1,..m, (7.3)

ill

((C)=e(Z,)=e,+1=¢,, gn(C)=-gn(Z)=1,  (74)

are classical counterparts to the ghost operators (3.1), and the substitution symbol |,
implies setting the classical variables (7.3) equal to zero in (7.1).
Owing to egs. (3.3) and (3.5), we have

QA2 =0, (7.5)

HAQ - @AH =0, (7.6)

3 4 3 J
)} )

where

= 1, — — —
A‘e"p{z’h 9C* 9P,  9C* 92,




ILA. Batalin et al. / Dynamical systems 167

In order to solve these equations again the series in powers of the classical variables
(7.3) are used for Ansitze

Q=Y 2 .2 X in(q,p,®)CH...CPn, (7.8)
m,n=0

H= Y & .. .2 Y i(q,p &)Ch. C. (7.9)
m,n>0

The tilde over an operator means the correspondence (5.17)-(5.19)* is used
throughout.
The coefficients in expansions (7.8) and (7.9) have the symmetry properties

Xor:zgm= Xy (7.10)
Ya1 fm = Y[[“‘ bal’]"] , (7.11)

where the symmetrization
a,...a,-lay...a,l, b,...0;—>[b,...b] (7.12)

is defined for any quantity Kj! - ;» as

K[[b am] = S‘fll anKg J:Sdl (7.13)
a a 3 7)
m! Sb’:'b;" = aﬁal . d a, .@b - ‘@bl (714)
3 9
1 b...b, — by b, . . 7.15
n Sa,:mal (C LCo JC o acal) ( )

The substitution of (7.8) and (7.9) into (7.5) and (7.6) creates the relations for the
coefficients

Llppel=0, m=0,1,..., n=0,1,..., (7.16)

Mg al=0,  m=0,1,..., n=01,.., C(7.17)

* Note an awkwardness in notations. The coefficients in egs. (7.8) and (7.9) correspond, in the sense of
egs. (5.17)—(5.19) to the operators X3~ :f=(q, p), ¥y im(q, p), and are not to be identified with
any of the operators (5.7), (5.15), (5. 20) ‘and (5.24).
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where

m n
Zoogm= ¥ L (4 Xai Ty o] (<)

+ZXa1 T X cd ap+1 m( 1) C‘;':r}, (718)

byr1 d;. Ta e,
r.s

r{yay...a,¢ vd; . d a e
+Z(Yb‘ b T XD, cam(=1)

q

— Xax

q+1d

»=% L -,
, s=0

_ )( y e,,,+1)+1
i=p+1 , j=q+1 !

2 €+ Z eh+1)Zec,

i=p+1 i=gq+1

[y}
S
~
Il
———
=
m
f
+
—t

(p+r)(g+r)(m—pts)in—g+s)t .
plrigt(m—p)tst(n—g)! (—1in)'(

m r
rpr — pr
€, =€, + Z ‘a,‘*’ Zec’_,

i=p+1 i=1

pr=
Cy =

n r
1npr — . pr
€7 =€ + Z fb,."‘ Zec,_,
i=qg+1 i=1

S gTd by (=19 ),

3ih)’,

(7.19)

(7.20)

(7.21)

(7.22)

(7.23)

(7.24)

The expansion coefficients in eqs. (7.8) and (7.9) are related to the structure

operators of the extended gauge algebra as

( 1)E”mu by
X"al..,am=8m+1 Fay ... a,
PaBU T (m A 1) Pt

(-

Ga,...d, _Sm_____ ' Traj...a,
Yoropm=29, T Verl o
" (m?)

(7.25)

(7.26)
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where the following designation is used
m m

Epgm= ) g+ )

i=2 j=i i=2

T:M:

€. (7.27)

1

The power (7.27) guarantees, as a consequence of egs. (7.10) and (7.11), that the
structure operators U SV in the r.h.s. of egs. (7.25) and (7.26) obey the
natural antisymmetric property: the permutation of any two adjacent superscripts
(a; < a,,,) or subscripts (b, ., < b;) produces an extra sign factor

—(~1) % or = (~1)%e, (7.28)

respectively.
For m = 0 in the r.h.s. of egs. (7.25) and (7.26) by virtue of egs. (3.7) and (3.8) one
has

U,=T;(q.p.9), V=Hyq,p,9). (7.29)

In case of rank-one theories, when the expansions (7.8) and (7.9) stop short with the
terms linear in 2, one has exactly expressions (6.1) and (6.2) in eq. (7.1). In this
case, eq. (7.16) for m=0 and n=2 and eq. (7.17) for m=0, and n=1 give the
extended involution relations (6.7) and (6.8), respectively.

8. Correspondence with the formalism of refs. [1,2]

Here we shall discuss the correspondence between the modified formulation in
the present paper and the one developed earlier in refs. [1,2]. The crucial point here
is certainly the way of defining the additional variables and constructing the
effective constraints. To get an adequate insight into the matter, a pure classical
description is quite sufficient. Moreover, to avoid considering the now inessential
sign factors, we confine ourselves here to the classical consideration of the pure
boson case.

Let us first remember how the effective constraints are built in refs. [1,2]. The
principle fact is that arbitrary second-class constraints ¢/ can be presented as

12 =14"(q, p)vE(q.p), (8.1)

where the functions 7’(g, p) Poisson commute to produce the constant simplectic
matrix w,g

{72, 1 } =g, (8.2)

and vf(q, p) is an inversible matrix that depends, generally, on the canonical
variables (q, p).
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We define now the extra variables ¢* to be included into the Poisson bracket
definition, so that

{050} =0,  wuefT=8]. (83)
Then, the functions
A= 10+ w0", (8.4)
obey
{T.;’Tﬂ’}=0’ (8.5)

i.e. the function (8.4) is an abelian first-class constraint. However, at ¢ =0, these
constraints convert not to the original constraints (7.1), but to the functions

=1ty (v ") (8.6)
Let us, therefore, define new first-class constraints
i=1uf =17+ w0f]. (8.7)
For ¢ =0 they coincide with eq. (8.1), but prove to be already nonabelian
{12, 45} =tjul,. (8.8)
Here, the structure coefficients
— Y ; ’
ulp= (071 ({ut, 4} — {of 0})
- Y - 8 'd v ’
— 407 (o), ({0, o) = (ofs w2 }) + 13ulp, (8.9)
appear on the r.h.s. The functions
ulp=—upd = —ul}, (8.10)
are arbitrary and regular.
It is the operator-valued analogs of the functions (8.7) that are in fact used in refs.
[1,2] for effective first-class constraints (see, e.g., egs. (2.36)—(2.38) in ref. [1]).
Now we are going to see how the effective constraints are constructed in ref. [5]

and to put these two constructions into correspondence with one another. Let ¢’ be
again the original classical second-class constraints. Then, the prescription of ref. [5]
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is to directly look for abelian effective constraints ¢, obeying the equation
te=tq.2.9),  {tutp}=0, (g, p,0)=tl(¢q,p) (811

in the form of a series

o0
ta=t2(q, p)+ X Xou, o(q: D)™ .. 9™ (8.12)

n=1
Within the approximation linear in ¢,

ta=t;’+xap<pﬁ+0(q:>2), (8.13)
one gets

{2, é’} = —Xn,w""Xp, (8.14)

which corresponds to the classical approximation in our egs. (5.12) and (5.13) for
n=0. Equations for higher coefficients in expansion (8.12) also follow, quite
naturally, from our egs. (5.12) and (5.13) in classical approximation at n=1,2,....

Let us ask ourselves the question: what is the relation between the two sets of
effective first-class constraints? The constraints (8.12) are abelian by construction,
whereas the constraints (8.7) are nonabelian according to (8.8) and (8.9). However,
at @ =0, both sets of constraints coincide with ¢7’. The question is, is it possible to
reduce the nonabelian constraints (8.7) to abelian ones by using the abelization
procedure? It is known that any first-class constraints can be (locally) made abelian
by forming a linear combination with regular coefficients. At first glance, the
making of the constraints (8.7) abelian is trivial, since they are already linear
combinations of abelian constraints (8.4). Although being abelian, the constraints
(8.4) do not coincide with ¢/’ at ¢ = 0. Hence, we should try to meet simultaneously
the two requirements: first, that the linear combinations of constraints (8.7) with
regular invertible coefficients,

t4(q, p,9)wE(q, . 9). (8.15)
be abelian, is
{tawl, 1wy} =0, (8.16)

and, second, that the condition
wt’l‘(q’ p!O) =8Fa’ (8‘17)

be obeyed, which is to guarantee the coincidence of (8.15) with ¢;(¢q, p) at ¢ =0.



172 1L.A. Batalin et al. / Dynamical systems

To solve equations (8.16) and (8.17), the power-series representation can be used

o0
wl=088+ 3 yB (4. p)9™...0™, (8.18)

n=1

so that, within the accuracy linear in ¢ one has
wi =88+ ybe7+ 0(¢?). (8.19)

The abelian constraints (8.12) are, naturally, identified with the linear combinations
(8.15)

ty=1tiwh, (8.20)
whence it follows in the linear approximation (8.13) and (8.19) that
Xog =UIW,g + t)/y)s. (8.21)

The first term in the r.h.s. of (8.21) gives exact solution to equations (8.1) and
(8.14) on the hypersurface of constraints ¢”” = 0. The presence of the second term in
eq. (8.21) then corresponds to the following general circumstance: any two regular
functions that coincide on the hypersurface of constraints differ from one another,
generally, by a linear combination of constraints with regular coefficients. Thereby,
the eq. (8.21) determines the coefficients yJ; up to a transformation

Yl = Yl +15x1p, (8.22)
where
zzsp = —-zi} . (8.23)

are arbitrary regular functions. In an analogous way one can find (within a natural
arbitrariness) all the coefficients in expansion (8.18) in terms of those in expansion
(8.12).

Thus, we see that to find abelian effective constraints (8.12) following the recipe
of ref. [5] is to find the matrix (8.18) of the special abelization (8.16) and (8.17) for
the effective nonabelian constraints (8.7), defined in refs. [1.21.

On the other hand, we know [6] that making the first-class constraints abelian is
associated with a ghost-depending canonical transformation of the fermion generat-
ing operator of the gauge algebra. The term .?Tawé’cﬁ in the expansion of the
operator of this canonical transformation just explicitly includes the matrix of the
linear combination. This is already enough to make it clear that the generating
operators of the abelian gauge algebra of the constraints (8.12) and those of the
nonabelian algebra of constraints (8.7) are related by just the abelizing canonical
transformation.



I.A. Batalin et al. / Dynamical systems 173

Now we are in a position to formulate the final result of this section: the two
formulations of operatorial quantization — that developed earlier in refs. [1,2] and
that considered in the present paper — are canonically equivalent. To be more
precise, the generating operators of the gauge algebra and the unitarizing hamiltoni-
ans are related in the two formalisms by a canonical transformation depending on
the ghosts that make the gauge algebra of the effective constraints abelian.

9. Conclusioh

Here we shall compare some features of the two versions of operatorial quantiza-
tion suggested, respectively, in refs. [1,2] and in the present paper in what concerns
their results. In a way, these features are complementary. This becomes especially
obvious from the structure of the fermion generating operators, providing there is
no first-class constraints originally in the theory. The generating fermion operator
given by eq. (2.32) of ref. [1] is linear in the extra degree-of-freedom operators @,
but is, generally, an endless series in powers of the ghost operators 2,C. The
corresponding generating fermion operator (4.10) of the present paper is, on the
contrary, linear in C”, but, generally, contains all powers of ®. The unitarizing
hamiltonian is a series in powers of @ in the both formalisms, but in the formalism
of refs. [1,2] it also is a series in powers of ghosts, while in the present formalism it
is quadratic in the ghosts (C”, P, (P",C").

It may seem that the formalism of refs. [1,2] is much more complicated techni-
cally than that of the present paper. Still, we think that each formalism has its
advantages and disadvantages. For instance, in the present formalism the effective
constraints and hamiltonian operators are series in powers of the additional vari-
ables @ that carry the statistics of the original second-class constraints. It is hardly
probable that in any nontrivial cases these series are saturated by finite numbers of
terms, although for every known example the series in powers of ghosts are known
to include only finite numbers of terms in the theories with first-class constraints.

In view of the above mentioned, we adhere to the opinion that each of the two
alternative versions of operatorial quantization has its special features that may
make it advantageous in studying special models. Namely, the formalism of refs.
[1,2] is likely to be more appropriate when treating the theories where the second-
class constraints include the “former” first-class constraints distorted by a strong
violation of an initial gauge symmetry, say, by mass terms of no-Higgs origin. On
the other hand, the present formalism may prove to be more proper for the theories
in which the second-class constraints are not of a natural gauge origin. The case
when the second-class constraints are polynomials and one can hope that the series
in powers of the extra variables ¢ contain only finite numbers of terms is likely to
belong here too.

Thus, in refs. [1,2] and in the present paper we have studied in detail two
realizations of the general method of operatorial quantization in the presence of
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second-class constraints. One may ask whether the above two realizations saturate
all the available possibilities. The answer is certainly no. There exists an infinite
class of canonically equivalent formulations covered by our basic equations

[2,2]=0, €(@)=1, gh(2)=1, (9.1)
[#,2]=0, €(o#)=0, gh(s#)=0, (9.2)
H=u+ (in) '[P, 0], (9.3)
e(¥)=1, gh(¥)=-1, (9.4)
Q=0 w=wt, ¥=-¥ (9.5)

As applied to the systems with irreducible first- and second-class constraints (egs.
(2.2) and (2.3) respectively), the general solution has the form

Q=0pnlq, p;®;C,P;C", P")

+a P+ TP, (9.6)
H=H#(q, p; ®;C", P, C", P"), (9.7)
under the conditions
2..(q, p;0;C’",0;C",0)=T,;/C"*+ T, C", (9.3)
#(q, p;0;0,0;0,0) = H,. (9.9)

The realization of refs. [1,2], as well as the present one, are two simplest
particular solutions, gained in the framework of (9.1)-(9.9), specialized by their
mutually complementary properties, as explained above.

In the general solution (9.6)—(9.9), the boundary conditions (9.8) contain the
original first- and second-class constraints in a fully symmetrical way. Special for
the second-class constraints here is only the dependence on the extra degrees of
freedom @ present in eqgs. (9.6) and (9.7).
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