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Abstract:

A review of the recent results concerning the kinematics of conformal fields, the analysis of dynamical equations and dynamical
derivation of the operator product expansion is given.

The classification and transformational properties of fields which are transformed according to the representations of the universal
covering group of the conformal group have been considered. A derivation of the partial wave expansion of Wightman functions is
given. The analytical continuation to the Euclidean domain of coordinates is discussed. As shown, in the Euclidean space the partial
wave expansion can be applied either to one-particle irreducible vertices or to the Green functions, depending on the dimensions of
the fields.

The structure of Green functions, which contain a conserved current and the energy-momentum tensor, has been studied. Their
partial wave expansion has been obtained. A solution of the Ward identity has been found. Special cases are discussed.

The program of the construction of exact solution of dynamical equations is discussed. It is shown, that integral dynamical equations
for vertices (or Green’s functions) can be diagonalized by means of the partial wave expansion. The general solution of these equations
is obtained. The equations of motion for renormalized fields are considered. The way to define the product of renormalized fields
at coinciding points (arising on the right-hand side) is discussed. A recipe for calculating this product is presented. It is shown, that
this recipe necessarily follows from the renormalized equations.

The role of bare term and of canonical commutation relations (for unrenormalized fields) is discussed in connection with the problem
of the field product determination at coinciding points. As a result an exact relation between fundamental field dimensions is found
for various three-linear interactions (section 16 and Appendix 6). The problem of closing the infinite system of dynamical equations is
discussed.

Al above said results are demonstrated using Thirring model as an example. A new approach to its solving is developed.

The program of closing the infinite system of dynamical equations is discussed. The Thirring model is considered as an example.
A new approach to the solution of this model is discussed.

Methods are developed for the approximate calculation of dimensions and coupling constants in the 3-vertex and 5-vertex ap-
proximations. The dimensions are calculated in the 1¢? theory in 6-dimensional space.

The problem of calculating the critical indices in statistics (3-dimensional Euclidean space) is considered. The calculation of the
dimension is carried out in the framework of the A¢* model. The value of the dimension and the critical indices thus obtained coincide
with the experimental ones.
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1. Introduction

Recent investigations have shown that there exists a whole class of Lagrangian quantum field
theories, where we are not faced with the “charge-zero” difficulty for renormalized interactions.
This primarily refers to Yang-Mills gauge fields interacting with spinor fields and to certain
models of unified interactions. In this case it is possible, using a particular choice of the coupling
constants (and representation types), to provide the required mass dressing of intermediate vector
fields (due to the Higgs' mechanism), on the one hand, and to ensure asymptotic freedom on the
other hand. The characteristic feature of theories with asymptotic freedom is that the interaction
at small distances decreases with decreasing distance and goes to zero. Another version of the
theory (mathematically self-consistent. as well) is known, where the effective charge at small
distances tends to a constant value (fixed point). In this case, and near the light cone, a conformal
invariant solution is realized. :

The concepts of scaling and conformal symmetry of interactions at small distances are based
on the assumption of structureless particles. It is assumed that at distances much smaller than the
particle Compton wavelength there are no characteristic sizes. Small distances correspond to a
range of events characterized not only by large squares of external momenta, but also by large
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momentum transfers, hence rest masses may be neglected. In this range of events the theory is
believed to be invariant under scale transformations
X, = AX, (1.1)

and the special conformal transformations

2
S —Eb;)bixbzxf (12)
With the transformations of the Poincaré group
X, = X, + a,, (1.3)
X, = OyX,, Wy = — Oy, (1.4)

they form the 15-parametric group of conformal transformations. Instead of the special conformal
transformations (1.2), it is more convenient to make use of the (conformal) inversion

x, = Rx, = x,/x?. (1.5)

Then (1.2) can be represented as a product of three transformations: x, — (RP,R)x,, where P,
is the operator of translation by the vector b. From (1.5) we have

(Rx)> = 1/x*,  (Rx — Ry)* = (x — y)*/x*y™. (1.6)

It is essential that conformal symmetry is acknowledged to be approximate, since real particles
have a nonvanishing mass. The conformal invariant theory describes only the asymptotic behaviour
of Green functions near the light cone, where the rest mass may be neglected. Hence the step
following the construction of the conformal-invariant theory consists in passing over to the mass
shell, i.e. to taking account of the terms breaking the conformal symmetry. It should be noted,
however, that some experimental predictions can even be made in the case of exact symmetry.
This primarily concerns deep-inelastic lepton-hadron reactions, the annihilation of e*e™ into
hadrons, e "p and e "e* scattering, etc. Their responsible strong interaction is localized at distances
much smaller than the hadron dimension, i.e. in the range where it is assumed to be conformal
invariant. In this case the problem may be reduced to the calculation of vertices including con-
served currents, the external momenta lying off the mass shell.

" Another important application of the conformal symmetry hypothesis is met in statistical
mechanics when treating the problem of phase transitions. There is a qualitative as well as a formal
analogy between statistics and quantum field theory. In particular, the correlation functions
correspond to the Euclidean Green functions of the field theory, and the correlation length is the
analog of the Compton particle size. Both theories differ only in the dimension D of the space
where they are formulated.

Hence we will consider the conformal-invariant field theory for the general case of D-dimensional
space. For D =4 and D = 3 it describes the interaction of elementary particles and critical
phenomena in statistical mechanics, respectively. A large body of literature is devoted to their
description in terms of the scaling and conformal symmetry hypothesis (see, €.g. [1] and the
references given there). It is essential that in this case the consequences of the conformal symmetry
hypothesis can be experimentally verified.

In recent years significant achievements have been made in studying the dynamics of the
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conformal-invariant theory [2-8], as well as on several problems of conformal kinematics in
Minkowski space, for the operator product expansion of fields, etc. [8-22]. In the present review
primary emphasis is placed on recent results obtained by the authors for the solution of exact
dynamical equations, the Ward identities [4-6, 8] and the derivation of a partial wave expansion
[9,8,22] in Minkowski and Euclidean spaces. We will also discuss new results (obtained by
Schroer and Swieca [13] and by one of the authors (M.Ya.P) [9, 12,21, 22]) concerning the
analysis of the transformational properties of fields and of their classification. For those interested
in a more detailed list of references (including problems untouched in the present review) we may
recommend the reviews [23-25]. Another interesting trend untouched in the present review should
be particularly mentioned. It refers to the theories with spontaneously-broken conformal sym-
metries [26].

The review consists of two parts. In the first part (sections 2-7) the general kinematical and
axiomatic restrictions on the Green functions are treated and a mathematical technique is developed
that enables us to efficiently investigate the dynamics of the theory. Armed with this technique one
may not only hope to achieve a deeper insight into the general principles of quantum field theory,
but also to find its exact solution in the vicinity of the light cone. This problem is discussed in the
second part of the present review (sections 8-16) where the detailed analysis of the dynamical

_ equations is given beyond the scope of perturbation theory. In section 15 we discuss methods for
approximate calculations of the dimensions and applications to statistical physics.

The plan of presentation is the following. In section 3 we discuss the classification of fields in
the Minkowski space and their transformation properties. An essential point here is that the fields
transform via representations of the universal covering group of the conformal group. This result
was first obtained for states obtained by applying the field to the vacuum by one of the present
authors (M.Ya.P.) in [9,12] and independently by Riihl [10] and then generally for ficlds by
Schroer and Swieca [13] (see also [16-22]): We demonstrate that, apart from the scale dimension,
an extra quantum number 4 is needed for the classification of fields. This is due to the complicated
structure of the covering group [9, 13, 17a, 18, 22]. The physical fields @ x) are superpositions of
irreducible fields with the same value of the dimension d and different values of 1. We also demon-
strate that the physical fields are defined [53,25] on the infinite-sheeted universal covering of the
Minkowski space. This is implied by causality and follows from the study of finite conformal
transformations of the fields. In sections 3—5 the derivation and properties of partial wave expan-
sions in Minkowski and Euclidean spaces, obtained independently by several authors [2, 9, 27,
28, 317 is discussed (see also [3, 5-8,12, 18, 21,22, 32, 33])).

In order not to overload the presentation with mathematical details, a review of the main
properties of the conformal group is given in Appendices 1 and 2. Appendix 1 discusses the con-
formal group for the cases of one (group SO(2,1)) and two dimensions (group SO(2,1) ® SO(2,1)).
This discussion is based on the results of refs. [27, 12, 22] (see also [32, 34, 34a]). Despite the relative
simplicity of the conformal group in one-dimensional space, it has analogs for all important
properties of the conformal group in four-dimensional space-time which will be reviewed in
Appendix 2 (see also [35]). Hence, we recommend the reader to look through the results of Appen-
dix 1 before studying the real conformal group of space-time.

In sections 6 and 7 our results [3, 36,37, 8, 58] concerning the Green functions containing con-
served currents and the energy-momentum tensor are given. A general solution of the Ward identities
for a four-point function is considered [5, 37, 8]. A partial wave expansion has been found for the
particular choice of Green functions with one or two currents (8]
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In sections 8-16 the analysis of the dynamical equations is given. In section 8 we discuss the
exact set of renormalized integral equations for vertices that was obtained by one of the present
authors (E.S.F) in ref. [60] and by Symanzik in ref. [61]. In sections 9, 10 this set of equations is
shown to be diagonalized by the partial wave expansion. In section 11 the solution of the integral
equations is discussed. In section 12 a simple special solution of the Ward identity is studied and
the coupling constants of the tensor fields related to the special solution under consideration are
found. In section 13 we consider the equations of motion for renormalized fields and discuss the
question of how the product of two fields in coinciding points should be defined. This product
occurs in the right-hand side of the equations of motion. We show in section 13 that the way to
make the arguments of two renormalized fields coincide is uniquely determined by the integral
equations and may be found by explicitly solving them. With the use of this result we further
formulate a version of the derivation of the closed equations for the Green functions. In section 14
the main results are illustrated by considering the Thirring model. The new approach to solving
this model is formulated basing upon the results of sections 6, 7 and 9-13.

In section 16 we discuss the role of bare term (and also of canonical commutation relations for
unrenormalized fields) in connection with the problem of the fields product determination at
coinciding points. As a result we get an exact relation between dimensions of fundamental (scalar)
fields. Analogous relation for fields dimensions of the Yukawa model is given in Appendix 6.

In section 15 the calculations of the dimensions and coupling constants are presented performed
within the framework of the bootstrap programme [38-42]. A method is developed for calculating
integrals which are met in the three-vertex and five-vertex approximations with the 1¢>-theory as
example.

Applications of the developed methods are considered for calculations in the phase transition
theory. Anomalous dimensions and critical indexes are found in the frame of Ag* model. This
method allowed to perform calculations in any space-time dimension D without g-expansion.
Two cases are considered: D = 4 — gand D = 3.Itis shown thatat D = 4 — ¢ conformal invariant
equations lead to the known results of e-expansion. Approximate calculations at D = 3 in 5-vertex
approximation are performed. The following values are obtained for the dimensions d and A of
the fields ¢(x) and ¢*(x), respectively: d = 0.510, A = 1.34.

2. Conformal invariant Green functions in Euclidean space

As is known [44-46], the conformal symmetry fixes the form of two- and three-point Green
functions up to constants and imposes some restrictions on higher Green functions. In this
section their general expressions will be given for the most important cases. Since in what follows
the Euclidean formulation of field theory will often be used [47], we consider Green functions in
the D-dimensional Euclidean space whose conformal group is SO(D + 1, 1). The complete
analysis is given in [3,32]. It can readily be seen that for D = 4 its Casimir operators coincide
with (A2.2). In the general case (D # 4) the classification of the irreducible representations is
involved due to the complicated structure of the Euclidean Lorentz group (group SO(D)).
Representations of the group SO(D + 1, 1) correspond [17] to analytical representations (or to
those of the discrete series) of the universal covering group of the conformal group.

We will restrict ourselves to the consideration of tensor fields, being the symmetric traceless
s-rank tensors. Their associated irreducible representations are classified by the values of two
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numbers: dimension ! and spin s. In this case the representations (/, s) and (D — [, s) are equivalent.
Introduce the notations

s=(s, &=(D—1s). 2.1)

Let 0,(x) = O, ... ,..(x) be the tensor field with quantum numbers a. Its transformational properties
with respect to the transformations (1.1-3) are as follows:

U(a, 0)0,(x)U " Y(a, @) = T(@™)0,(wx + a), 2.2)
where T(w™?) is the matrix of the finite-dimensional representation of the Euclidean Lorentz
group,

U(1)0,(x)U™ (1) = 1'0,(Ax). 2.3)

Instead of special conformal transformations it will be more convenient to consider the R-trans-
formation [48] of fields, see (1.5). For the fields 0,(x) it has the form

UR)OL, ., (U (R) = @ G () G (WIOL, L (RX), (2.4)
where
GuX) = 8,y — 2X,%,/X%. | (2.4a)

Let the two-point Green functions be designated as A,(x; — x3) = (0| TO,(x1)04(x2) |0>.
As it follows from (2.2), the function A (x; — X2) depends on the variable (x; — x,)?. Using (2.3)
and (2.4, 4a) and the vacuum invariance, we find

1 1
Ay (x) = P n(6){g,.»(x) - - -g,‘,v,(x)}(—%gcz—)u (2.5)
where
h = D/2, (2.5a)

n(¢) is the normalization factor, braces denote trace subtraction and symmetrization in the
indices g, . .. i, and independently in v, ... v, Note the important property of two-point functions
[29] resulting from (2.4):

(0] 0,,(x1)04,(x2) 0> =0, if g, # 0. (2.6)

This property has a simple mathematical meaning: the states O,(x) |0y = |6, x> form the space
of the irreducible representation o (see Appendices 1 and 2). Equation (2.6) means that the vectors
belonging to different representations o, and o, are orthogonal: {(x;, 0,|6,,%x,> = 0. This
property is changed only for o, = &,. In this case we have {(xy, a|o”, x,> ~ 8(x; — x,). In what
follows scalar fields will mainly be considered. Introduce the notation @,(x) for them, where d
is the dimension. Let the two-point function of scalar fields be designated as*

1 r
Gylxyz) = <0| Pix1)Pa(x2)|0> = 2n) T (jd_) ) (%xlfz)"' (2.5b)

* Where x;; = x; — X;.
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Consider the three-point Green function

Gl(xyx,x3) = <0| Toa(x1)(0a1(x2)¢dz(x3) |0> = gcad'dz(x1x2x3), 2.7)

where g is the coupling constant and C™%(x, x,x,) is the properly normalized invariant function.
Introduce graphical notations for the functions G(x,x,x,) and Co4%(x 1 x,X3)

Xyd, x,d,
X0 X0
Gy %,%3) = MWGX _ g . 2.8)
X3d, X3d,

From (2.2-4) one can readily obtain

282 | 1

Cz‘f‘_‘ff"s(xlxzxs) = WN(Gdldz) @x2,)Fai-d-a @xZ, )~ EF a2
X (%x%z,)““‘{"z"“)’z [A. . u(x2x3) — traces], 2.9)
where
i) = Bl iy = Ot (e (292)

N(od,d,) is the normalization constant. Along with n{o) it will be given in section 5.
Let an expression be given for a three-point function of scalar, vector and tensor of the rank s
with the dimensions ds, d, and d,, respectively. It depends on two arbitrary constants 4 and B:

X207,
Caulimudx1xox3) = {4, B} = A @
. X3d
1 1 | 1
= (215)}1 %xfz)(dl +d2—d3—s—1)/2 (%x%:;)(di +d3~dy—s+1)2 (%x%3)(d2 +d3—d; +5-1)2
X {Aljjz(xlxs)[/{,’j;_,_ us{X2X3) — traces] (2.10)
1 .
+ B— [Z guuk(xu)'lﬁ e .k X2X3) — traces]}.
X12 7k
In order to derive the expressions (2.9) and (2.10) we have used the relationships (1.6) and
guu’(x)'lﬁ’x(Rxla Rx2) = leﬁ(xl'XZ)a
(2.10a)

gur(x)gvt(x) = 6#‘,, guu‘(xl)gvv’(xZ)gu’v'(Rxl - sz) = guv(x12)'

Consider the higher Green functions G(x; ... x,)- When the number of variables is n > 4, the
function G(x, ... x,) is not determined unambiguously, since from x, ... x, arguments dimension-
less combinations can be composed which are invariant under the R-transformation. In particular,
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for n = 4 we have two such combinations:

= xfzx§4/xf3x§4, n= xf2x§4/xf4x§3. (2.11)

Their invariance can readily be verified with the help of (1.6). Thus, the most general expression
for the Green function of four scalar fields ¢, (x) may be written as

G(x1x,%3%x4) = (xfzxf3x§3xf4x§4x§4)_d’3F(§, 1) (2.12)

where F(&, n) is an arbitrary function. The higher Green functions G(x; ... x,) depend on n(n — 3)/2
variables of type (2.11).

Some additional limitations on the function F(&, n) arise in the case of identical fields from the
requirement of locality. Locality implies that the function G(x,x,x3x,) is invariant under any
permutations of the coordinates. As a result we find for F(&, n):

F(,n) = F(n,&) = F(&/n, 1/n) = F(1/n,n/c). (2.13)

3. Fields in Minkowski space

3.1. Classification of fields

It is common practice to classify relativistic fields by quantum number of the kinematical group.
In a usual relativistic theory this is the Poincaré group, whose Casimir generators are expressed
via mass and spin. Irreducible relativistic fields with the specific values of mass and spin satisfy
the relations

[o(x), P,] =id,0(x),  [o(x),M,,] =i(x,0, — x,0, + Z,,)(x) (3.1)

which determine their transformational properties. Note that transformation law (3.1) depends
only on the spin structure rather than on the field mass. This property holds for finite transforma-
tions as well, see (2.2). From this it follows that reducible fields (i.e. the superposition of fields with
different masses) are also transformed similar to irreducible ones.

The situation is markedly complicated in the case of conformal fields, which in addition to
(3.1) satisfy the relations

[(pd(x)’ D:I = _l(d + xuau)(pd(x)’

[o4x), K,] = —i(2dx, + 2x,x,0, + 2X.X,,)0(x)
where d is the scale dimension. The operators of mass and spin are no more invariant. Indeed,
from the relation e!*PP2 e "i4P = ¢~24P2 jt follows that P? has an infinite continuous spectrum of
values in each irreducible representation. There is also a smaller class of representations where
P2 = 0. They coincide with massless representations of the Poincaré group and describe free
massless fields. For all physically meaningful representations which correspond to interacting

fields the spectrum of P? is continuous. In addition, representations describing field states meet
the spectrality axiom

P*>0, P,>0. (3.3)

Spin is not invariant either. In particular, there exist such representations of the conformal group

(3.2)
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where it takes an infinite spectrum of values. It is essential, however, that every representation
satisfying (3.3) has the spin structure*

U1-J2) ® G2.J1) . (3.3a)

where j,, j, are the Lorentz group quantum numbers. The values of Casimir operators for these
representations are given in Appendix 2. They depend on three numbers: j,,j, and the scale
dimension d. In what follows we will consider only those tensor fields where j, = j, = s/2 (sym-
metric-traceless tensors). They are classified by the value of the dimension and the spin (I and s,
respectively).

These numbers, however, are insufficient for a complete classification of the conformal fields.
In addition to | and s another quantum number should be introduced which will be referred to as A.
It is related to the properties of the representations of the universal covering group of the conformal
group, which should be considered as the true symmetry group of the theory. The necessity of such
an extension of the conformal group may be argued in different ways [9, 10, 12, 13]. Consider,
e.g. the following [9, 12] states ¢ (x)|0>, where d is the dimension. As it will be shown below,
they form the space of irreducible representation [27, 12] and, hence, their momentum spectrum
may be judged by the spectrum of the Poincaré group representations involved in the given
irreducible representation of the conformal group. If one restricts oneself to single-valued repre-
sentations of the conformal group or to its covering SU(2, 2), then condition (3.3) results in the
quantization [27, 49, 50, 51] of the field dimension

d=D-2+4+5s5+n, n is a positive integer. (3.4)

To overcome this difficulty, one should consider infinite valued representations of the conformal
group which are the representations of the (infinite-sheeted) universal covering group. As shown
in Appendix 2, its irreducible representations are characterized by three numbers: I, s and 4,
and the condition (3.3) allows any dimension values. The additional number A characterizes the
degree of “ambiguity” of the representation as a representation of the conformal group (and its
associated irreducible field).

3.2. Transformational properties

The appearance of the additional quantum number markedly complicates the transformational
properties of the fields for finite transformations. Note, first, that finite transformations (1.2)
disturb causality. They connect the space-time points falling inside and outside the light cone
This leads to the disturbance of local (anti) commutativity of fields. The only exceptions occur in
the case of free massless fields in D-dimensional space-time (where D is even [51], d = h — 1)
and for generalized free fields with dimensions (3.4). The commutator (anti-commutator) of these
fields differs from zero only on the light cone [52, 50]. (Notice that dimensions (3.4) correspond
to single-valued representations of the group SU(2, 2).)

The above-said is related to the non-local transformation character of fields in the Minkowski
space for finite conformal transformations. Indeed, let ¢,;(x) be an irreducible conformal field.

* This follows [9, 52] from the analysis of irreducible representations given in ref. [35b]. The rigorous form of this result is presented
in a recent work by Mack [35c¢].
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Physical fields with fixed dimension are superposition [13,22] (see also point 4 of this section)
Pa(x) = za: P asa(), (3.5)

ie. they are in general reducible. The fields ¢, as well as ¢,,; have the same infinitesimal trans-
formation properties as those given by relation (3.2). This property, however, does not hold when
passing to finite transformations. It will be shown below that finite transformations of the irreducible
fields depend explicitly on the number A, and this results in a non-local transformation of the fields
(3.5), see also (3.18), (3.19) and (3.22), (3.23). E.g., special conformal transformations of scalar fields
are of the form [13]

U(b)q)d,).(x)U_ l(b) = [0' +(b, Z):l _(“Wz[d -(b, }»)] _(d—l)/z(pd,}.(xb),
where
[o.(b,x)]" = (-b*F iebo)'[ —(x — b/b*)?* Fie(xe — bo/bz)]”, x, = (x — bx?)/(1 — 2bx + b*x?).

To restore locality one is forced to formulate the field theory in the (infinite-sheeted) universal
covering of the compactified Minkowski space. In this space it proves possible to introduce a
causal order and, as a result finite transformations of the fields @,,(x) do not explicitly depend on
the 2 number and the representations of the universal covering group acting there are (determined
as) single-valued. This approach was first formulated by Segal in [53] and then in more detail in
[16,20]. The construction of the universal covering of the compactified space and its causal order
are described in detail by Todorov in review [25]. Hence, we will restrict ourselves to a simple
illustration of this approach by an example (of the one-dimensional space).

Let ¢,;(x) be a field with dimension ! in a one-dimensional space (with the x-coordinate).
The description of the conformal group acting in one-dimensional space is given in Appendix 1.
Consider the transformation of the maximal compact subgroup (Al.4a)

. xcoszy + singy
—xsin$y + cos iy

(3.6)

for the states ¢;,(x)|0), forming the irreducible representation (I, A) space. These states contradict
to the spectrality axiom (see Appendix 1) if I # A. To be more precise, for ! # A one should take
¢,,[0> = 0. However, we will tentatively disregard the spectrality axiom and consider these
states as different from zero. This method simplifies the analysis of the transformation properties
of the ¢,,(x) irreducible field. Represent the state ¢,;(x) |0> as the decomposition (A1.6)

Pu]0> = ¥ i) |LAsm),

m= — o

where

1 1 —ix\**tm
My — ¢m-d 1 — e
i) = Cmi 1 = UL 2sx> ~ s (1 +ix) .

It can be shown [22] that finite transformations in the one-sheeted x-space are of the form
eh(x) [0> = pya(x, Y)op(x) [0 3.7)
<m’ ﬂ', 1- llei'llAll’ A‘a x> = “I,Z(x, llj)ﬁr:;(x’)’ (373.)
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where A = {(P + K) is the generator of the transformations (3.6),
P, ) = [—(x + ie)sin 3y + cos JY] 14 [—(x — ie)sin 3y + cosLy] '+

It is essential that these transformations are explicitly dependent on the number A. According to
(A1.5) the transformation (3.7) at ¥ = 2z should take the form:

eznmfpu(x) |0> = eznu(l’m(x) |0> (3.8)

It is this condition that determines the dependence of the function y, ,(x, ) on 1. Indeed, assuming
that  — 2min (3.7) we obtain (3.8). The value y = 2z corresponds, according to (3.6), to the identity
transformation in the one-sheeted space x. Hence, relation (3.8) implies that the fields ¢,; cannot
be single-valued in a usual x-space. The same holds for the functions f;}(x). If the region of the
y-parameter is extended to the total real axis, from (3.7a) we will obtain an infinite set of branches
S04 (x) = e?™iingi(x) of the function f;2(x).

Now introduce a compactified space. For this it suffies to change to the realization of the group
SO(2, 1) on the circumference: e* = (1 — ix)/(1 + ix) or x = tg$a. In this case the circumference
is the analog of the compactified Minkowski space of refs. [53,25]. When varying the angle a
in the interval —7 < o < =, the x-coordinate runs through the overall space: —oo < x < 0.
Now the compact transformations (3.6) take the form « — « + y and the eigenfunctions of the
generator A = —id/0u are fii(x) = €*@*™, One gets the infinite-sheeted covering space by
extending the range of o (definition) to the whole real axis — o0 < o < c0. The single sheets
correspond to the intervals —7 + 27n < o < 7w 4 27n, where n is an integer. Now the compact
transformations of functions f;A(«) are of the form e¥*f,A(x) = f,2(« + ), any values — 0 < ¥ < 0
being allowed for the parameter . The functions f;X(«) and hence the states ¢, («) |0 are now
defined as single-valued in the infinite-sheeted circumference covering.

Thus we have shown that in the covering space the fields ¢,,(x) corresponding to various values
of A are transformed in a similar way. As a result, transformations of reducible fields (3.5) prove
to be local provided that they are defined in the covering space. An analogous construction in a
four-dimensional space enables us to introduce a causal order. The role of time by which the
causal order is introduced is played by the analog of the above-given coordinate «, and time
translations are generated by the compact operator A, see also [26, 34].

Now let the usual D-dimensional Minkowski space be considered again, where finite transforma-
tions are non-local and explicitly depend on A. It is essential that this dependence arises only in
those transformations which include the transformation of the SO(2) group entering into the
maximal compact subgroup, since the A-number is related just to the group SO(2), see Appendix 2,
eq. (A2.5). A special conformal transformation refers in particular, to this type. It is however more
advantageous, to consider directly the transformation €. In the analysis given below this trans-
formation will be used for « = 2zn. For later use let us introduce the operator

Vn — ez-ninA. 7 (39)

3.3. Partial wave expansion of field states

For further analysis of the transformation properties of interacting fields, it is necessary to
consider the field states

(x)[0),  elx)e(x2) [0, @lx)e(x2)e(x3)[0),. .. (3.10)
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and to decompose them to irreducible representations. This decomposition is closely related to
the vacuum operator product expansion. In this case the dynamical spectrum of dimensions in
the operator product expansion is determined by the spectrum of the A-values contributing to
(3.5), see point 4 of this section.

Let ¢ (x) be the interacting scalar fields satisfying all axioms of the field theory. Consider the
states @,(x)|0)>. From the comparison of (3.1, 2) with (A2.7) it may be concluded that these states
can be represented as @x)|0> =Y, |s, 4;x). Then from the spectrality axiom it follows that
only the representation of the discrete series D, where 4 = d can contribute to the sum on the
right-hand side (any other representations are inconsistent with spectrality, see Appendix 2).
Hence, we have [27, 12, 50]

G4, X> = @4(x)|0> (3.11)

where o, is the representation of the D, series and o, = (d, 0). Thus, the states ¢(x) |0)> span the
space for the irreducible representation (d,0, 1 = d). From this it follows that they are completely
determined by kinematics and do not depend on any specific dynamics.

Consider now other states (3.10). They are transformed over reducible representations, each
being decomposed into an infinite direct sum of the irreducible representations (1, s) whose spectrum
is determined by dynamics. The spectrality axiom as applied to these states implies, that every
representation contributing to the direct sum belongs to the D, series. Hence, with regard to
(A2.13), the completeness relation in the space of states (3.10) is of the form:

Zjdx|a+,x> (x, 64| =1 (3.12)

where I is the positive-frequency “unit” and ), is taken over all o, representations contributing
to the states (3.10). In particular, for the states @, (x,)@4,(x2) |0> we have [30,27,9,8]

Pa,(x1)0a,(x2) [0> = X 4, J dxQ®M%(x|x1x,) |0 1, X, (3.13)

where A4,0%1%(x|x,x,) = (X, 64| 0a,(X{)@4,(x2) |0, the value 4, is determined by the dynamics
and Q%'%(x|x,x,) is the properly normalized invariant three-point function. It differs from a
usual three-point function* and is expressed in terms of hypergeometric functions , F,. This results
from the non-local nature [22] of the generator A in the basis of vectors |6+, x>, see Appendices
1, 2. The explicit form of the function Q%4*(x|x, x,) has been found by one of the authors (M.Ya.P.)
[22], and its analog in a one-dimensional space is given in Appendix 1. Later on we will need the
Fourier transform of the function Q%%:(x|x,x,) in x-coordinate. For the D-dimensional space it
is of the form [7, 28] :

* Another form of the expansion (3.13) using the invariant three-point functions @’ which obey the local transformation law but
not the spectrality axiom is discussed in refs. [18] and [17a)]. The spectrality axiom, however, is valid, as before, for the Wightman
functions (3.29), since the expansion of them includes the quantity { dyA (x — y)Q'(y|x3x,). where the Fourier transform of the two-point
function A(x — y) is nonzero only at P? > 0, P, > 0. The most general form for the functions Q' and arbitrariness contained in them
have been investigated by Mack in ref. [17a].
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1dz — +ipx 1d2 — 2_.’7/2]\[(0-‘11‘12)
@ plxrxs) = J dxe™ QX = ~ T =G + 9 — 4 4 T 92

2 (I+dy+dy+s)/2~h x2 (I—h+s)/2
x (——) Ds(axiax2)<p—‘:> (3.14)

2
X712

p (d2—d1)/2
g 1—u\=™% ip(ux x
x Jdu[u(l —u)]"? 1(7) erirtmTE L {[u —wxi,p?]Y2),

where D(0,,0,,) is a differential operator of rank s, see [7]. The normalization factor N(od,d,)
can be chosen arbitrarily, since from the dynamics the product 4,N(od,d,) is determined. For
further purposes (see section 4) it is advisable to limit it by the condition

N(od,d;) _ N(dd,d,)
T((I+d, —d, +8)/2T(1—d, +dy +5)/2)  T(D—14+d,—d;+8)/2T(D—1—d,+d,+5)2)
(3.15)

Let expansion (3.13) meet the positivity condition. In this case all constants 4, should be real
and the representations ¢ unitary. The unitarity condition leads (with regard to (A2.11)) to the
known [9, 52, 54, 55] limitations on the dimension, which in the D-dimensional space are of the
form

I>3D—1, if s=0; IZ2D—-2+s, if s=21. (3.16)

Note that these limitations agree with the asymptotic behaviour of the functions Q%% since
these functions decrease fairly quickly [7] for | — co and increase for ! - — oo, so that (3.16)
ensures convergence of the expansion (3.13). On the contrary, the Fourier transform in x-coordinate
of a usual three-point function C%92 where ¢ = (D — I, s), increases for [ - co and it cannot
enter into (3.13).

Now introduce an additional assumption on the dimension spectrum in (3.13). This spectrum
should be determined from dynamics and may be both continuous and discrete. In what follows
we will assume that only the discrete spectrum (referred to as o,) is realized. This assumption is
equivalent to the hypothesis of the field algebra. From (3.11) any vector |a,, x> may be represented
as a result of the action of some tensor field O, with quantum numbers o, on the vacuum:
|64 x> = 0,.(x)|0. As a consequence the expansion (3.13) takes the form of the vacuum operator
product expansion

©a,(x1)Pa,(x3) |0> = Z A,, f dea“dldz(x|x1x2)0am(x) |0> (3.17)

It should be stressed that the assumption of the /-spectrum being discrete is not essential.
All the results obtained below are readily generalized for the case of a continuous spectrum,
see [22].

Finally, consider the transformation (3.9) applied to the states (3.10). From (A2.14) and (3.11)
(see also (3.8)) we have

V.0dx)|0) = €24p,(x)|0). (3.18)
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If the transformation V,, is applied to the both parts of the expansion (3.17), we find [9, 21, 22]

V04, (%1)@4,(x2) |0> = Z eznil'nAa, J dea“dldz(x|x1x2) |0-a5 x). (3.19)

Note that the phase factors in (3.18) and (3.19) do not appear if these states are defined in the
universal covering of the compactified space.

34. Decomposition of interacting fields into irreducible ones

Generalized free fields, to be more precise their positive- and negative-frequency parts, are the
example of irreducible fields. In the case of generalized free fields states (3.10) are determined as
direct products of one-particle states. For example, we have

ok (1)@l (x2) 0> = ldi, x> ® |d2, %2>+ (3.20)

where @{* are the negative- and positive-frequency parts of the field ¢ (x), |d, x) is the vector
from the space of irreducible representation of the D, discrete series, see Appendix 2. (The states
049t 0> differ from zero only at d; = d,.) From (3.18) and (3.20) we find

V,o§E (o8 (x,) [0) = e 24000 (x, )l (x2) |0). (3.21)

A similar result is obtained for other states (3.10). From this it follows that the transformation law
for generalized free fields is [9, 13, 8,22]

VoiE(x)V, !t = e 2mingt(x). (3.22)

Consider now the irreducible scalar fields @, ;(x) which are transformed according to the
representations (d, A), where 4 # +d. For these fields we have ¢, ,(x) |0> = 0, since the states
|d, A;x) do not satisfy spectrality (see Appendix 2). At the same time we will define their transforma-
tion law according to (A2.8), see also (3.8)

Vn(Pd,A(x)Vn_l = e?™*p, (x). (3.23)

Such fields were considered by Schroer and Swieca in ref.* [13]. Note that in contrast to generalized
free fields the Fourier transform ¢, ;(p) # 0 for p* < 0.

Any interacting field ¢ (x) is a superposition (3.5) of the fields @, ;(x). Indeed, even in the case
of generalized free fields we have: @ x) = @4;-=4(X) + @4 = -dx). For interacting fields the
decomposition (3.5) should contain at least one more field ¢, ;(x), with 1 # +d, since due to
interaction @, ,(p) # 0 at p*> < 0. It is natural to expect that in this case Y, in (3.5) comprises an
infinite number of terms. To find the decomposition of the interacting field @,(x) into irreducible
ones consider its “branches”: ¢{(x) = V,@x)¥,”* (in the compactified space this transformation
would correspond to the transition onto the nth sheet of the covering space, see subsection 2).
Now the set of ¢, ; fields entering into (3.5) may be represented in the form (see also [13]):

i) = 3 0PXe = Y Vipdol, e (3.24)

n=—o0

* The definition of A adopted here and in refs. [8,9,21,22] is related to the parameter ¢ introduced in [13, 18, 19] by the relation
& = (d — 2)/2. The operator ¥, also differs from the operator Z used in [13, 18, 19].
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The inverse transformation is of the form:
PP(x) ~ fdiqod,a(x) g™, : (3.25)

Decomposition (3.5) is a special case of this transformation at n = 0. Note that 1 takes values in
the interval —3 < A < 3, since the representations (d, 4) and (d, 4 + 1) are equivalent, see Appen-
dix 2. For the discrete series we may redefine 4 so that 4 = +(d — [d]) where [d] is the integral
part of d. With this definition the positive- and negative-frequency fields also contribute to (3.5)
and (3.25).

Consider some limitations on the spectrum of dimensions contributing to the expansion of the
the type (3.17). Comparing (3.21) and (3.19), we find that for the generalized free fields the trans-
formation law allows the following dimension values [9, 5]

l,=d, +d, +k, k is an integer (3.26)

for the states (¢S} |0>. These dimensions form a kinematic spectrum [5]. In the general case
the expansion (3.17) may comprise fields whose dimensions differ from (3.26) (dynamic spectrum).
Represent the interacting field in the form of (3.5) and consider the states @a,2,(X1)@,,(x2) [0
Using (3.23), (3.18) and (3.21), for the dynamic spectrum we find [13]

ly=»4 +dy, + m, m is an integer, (3.27)

where A; characterizes an irreducible component of the field @4,. Thus, the problem of dynamics
consists in elucidation of the spectrum of representations (d, A) in the expansion (3.5).

In conclusion note that more detailed information on the kinematic spectrum of the dimensions
(3.26) may be obtained by the decomposition of the direct product of representations in (3.20)
into irreducible ones. It is more appropriate to perform special calculations in the Euclidean space
using completeness relations (5.4), for more detail see [8,22]. It may be shown that [8,21,22]

l,=d; +d, +s + 2m, mis an integer (3.26a)
for the states @i 'p§’|0)> and

I, =0 (3.26b)
for the states @} 'p{*’ |0)>. Dimensions (3.26a) correspond to the tensor fields:

07(x) = im Dy(i0,,10.){05, ..., ®a, (X0}, ... 04 (X))},

where D, is a differential operator of rank s, and Oy, ..., means m-fold differentiation. These
fields enter into operator product expansion (3.17) for the states @57 (x5 (x,) |0>. The value
of dimension (3.26b) corresponds to a unit operator by which the expansion of states
@57 (x1)@4" (x,) |0) is exhausted. ‘

In the same manner [8,22] an operator product expansion can be obtained for free massless
fields. It includes the conserved tensors with the dimension D — 2 + s, where s > 1, see also
[7,18].
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3.5. Partial wave expansion of Wightman functions

- A complete set of Wightman functions can be obtained, calculating all possible invariant scalar

" products of states (3.10). Representing these states as an expansion of type (3.13) or (3.17), we

 obtain a partial wave expansion for the Wightman functions. Consider, e.g a two-point Wightman
function. According to (3.11) it is equal to

1
W —_ = = ~ N . .
Hxy — x3) = 0] 9u(x1)@ul(x2) 0> = {xy, 04+ |6d+9 X2 (—x2, + iex3,) (327

Analogously, for three-point functions we have from (3.11) and (3.13):

W(xyx,%3) = <0| ¢d1(x1)(pd2(x2)(pd3(x3) |0> = (X1, 6d+|(pd2(x2)(Pd3(x3)|0>
= J‘dea,l(xl — x)QH993(x| x,x3) = CH9%(x,%x,X3), (3.28)

where C?9293(x, x,x,) is function (2.9) in pseudo-Euclidean coordinates. In derivation of (3.28)
it has been taken into account that as a consequence of (2.6), from the total sum in (3.13) only one
term with quantum numbers of the fields ¢,, contributes to (3.28).

Consider a four-point Wightman function. From (3.17) we find [9,12,22,28]

Wixyx,%3%,) = <Ol <Pal(x1)§0az(x2)‘Pd3(x3)¢d4(x4) |0>
=3 Po, j dx dy[Q741%(x|x,x,)]*A, (x — YQT0(y|x3x,), (3.29)

where p, = A* A, , A(x — y) = {x,0, |a+, y> is the invariant scalar product. Here the axioms
of spectrality and positivity have been taken into consideration. Spectrality means that only the
discrete series representations contribute to (3.29). This results in the appearance of the Q°-functions
" in the expansion, and in addition ensures the reality of dimensions I, (see condition (A2.10)) and the
absence of infinite-component (in spin indices) representations (these representations are also
present in other series). Positivity implies that the dimensions I, are limited by condition (3.16) and
the expansion (3.29) converges (since Q? diminishes for | — o), in addition the constants p,  are
positive. ,
In a similar way the higher Wightman functions can be written. For example, for a five-point
function we have [9, 5, 8]
W(x;X2%3X4%s) = <0| Q1P203P4P5 |0> = Z <0| P19 |U1><0~'1| P3 |62><52| DP4QPs |0>(,3 30

0102

where ¢, and o, are the representations of the D, -series.

4. Analytical continuation to Euclidean region of coordinates

We discuss now the analytical continuation of the expansion (3.29) to the Euclidean coordinates.
Consider the Wightman function W(x;X,X;3x,) for relatively space-like arguments X, ...X4.
Its value for any arguments, including the Euclidean ones, can be obtained by the analytical
continuation through an extended tube. In the Euclidean region of arguments the left-hand side
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of (3.29) coincides with the Euclidean Green function G(x,x;x3x,). In the right-hand side it is
necessary, first, to analytically continue each term of the sum over o, to the Euclidean values
Xy ... Xy, and, second, to represent the integral in the internal line as an integral over the Euclidean
space. This program has been realized by one of the authers (M.Ya.P.) in [22], see also [5, 8].
It is appropriate to do it in two steps: first to change in (3.29) from the summation over o, to the
contour integral over dimension, and then to perform the analytical continuation of the internal
integral to that in the Euclidean space. It should be stressed that the latter is possible since it are
the Q% functions that enter into the integrand rather than the C%-ones (or superposition of Q and
C functions).
Introduce the analytical function (Q*%%(x,x;|x) = [Q%%(x|x,x,)]*)

I(o) = 27p(o)

rydd2& _ 7 Gdidg /
“Snrl—hT dx dx'Q%%2%(x, x, | x)A,(x — x)Q%44(x |x3%x4) 4.1)

in the complex plane of dimension. For Re | > h define it by the conditions:
1. All poles of I(o) are positioned in the real axis at the points [ = [,.
2. The residues in these poles are equal to

~ res {u(0)l(0)} = p,, fdx dx' Qi e(x, x, [ X)A,(x — X)Q (x| x3x,) 42)

where y(a) = p(6) is a weight function introduced as a matter of convenience and having no poles,
see (5.8). Now the expansion (3.29) may be written as a contour integral:

W(xX1X,X3%4) = ), f dli(e) + ...,

where points stand for the contribution of the terms with quantum numbers o, = 1,0, h—1
< I, < h, and the contour C is shown in fig. 1.

.
7

The conditions (4.2) do not yet determine the function I(o) unambiguously, since nothing limits
its behaviour in the range Re I < h. It is evident that this. ambiguous definition does not
influence the value of the contour integral over . Note, however, that the analytical continuation
to the Euclidean coordinates in each term of the expansion (3.29) is to be realized. As shown in
[8,22], it proves possible provided that the definition of the Sunction I(c) is completed by the condition

plo) = p(d). (4.3)

In fact, the condition of type (4.3) should have been imposed on the product Ny(od,d;)Ny(odsd,)
x plo) where No(od,d,) is the normalization factor of the function Q%2 see (3.14). But taking
into account (3.15), this condition reduces to (4.3).

)
A
a [ ]

Fig 1.

Lol = R =il e Y o B |
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It remains to discuss the contribution of terms with the dimensions I, < h. From (3.16) all the
poles of I{0) at the points o, = (I,, s,), where s, # 0, lie to the right of the point [ = h and are embraced
by the contour C. For s, = 0 one (or several) term is possible whose dimension is in the interval
— 1< 1, < h One of these terms is shown in fig. 1 as point 6o = (lp, 0). We will make the
sumption that at these points the function p(c) also has poles whose residues are determined by
e condition (4.2). From (4.3) it follows that each pole has its associated shadow pole [, = D — I,
Jocated to the right of the point h and contributing to the contour integral. Hence additional
terms should be introduced to compensate these contributions.
Let the exponential decrease of the functions Q¢ in the right-hand half-plane be used and the
integration contour in fig. 1 be unbended in the complex plane. As a result we obtain [8,22]

W(xy%2X3X4) = Py j‘dx dx’ {ledﬁo(x 1x2|x)Aao(x - x,)Qd°d3d4(xl|x3x4)

— 0M19279(x x5 | X)Ag (x — XNQ7OBH(X' | x3x4) }

h+iw

1
+ %; f ﬂ(l)dlsinn(l —h+59)
h—iwo
x p(o) jdx dx'Q92%(x %, | X)A(x — x)QFH(x' | x3%4)- (4.4)

The second term in braces has been introduced to reduce the shadow pole contribution at the
point G,. Expression (4.4) may be analytically continued to the Euclidean coordinates. The
continuation in x? ... xJ coordinates causes no difficulty. It remains to discuss the continuation
 in the internal coordinates x° and x?'. This procedure is given in detail in [22] (see also [7], where
an inverse problem was solved). Here we will cite only the main steps. Change in (4.4) to the
momentum space in the internal variables and consider the function 0%(x1 %, | P)ALPIQ? (p| x3x4)-
It has a branching point P> = 0. The momentum integral is taken over the region P?>0,P,>0.
Represent it as a contour integral embracing the cut drawn from the point P? =P —|P|>*=0.
Then change to the variable P, = —iP, and unbend the integration contour in the complex
plane of Pp,. As a result we obtain the integral over the Euclidean momentum space.

Note, however, that when unbending the integration contour in the plane of Pj, the integrand
definition should be extended to the total complex plane from its discontinuity on the cut. It
should be done so that first the integrand may decrease in a lower half-plane of Py, (this is necessary
for the contour deformation) and, second, may be expressed in terms of the Euclidean three-
point Green functions. To meet these conditions, it is sufficient in integral (3.14) to make the
substitution

® 12— K2 = —s—

[1,(2) — I-.(2)}. , (4.5)

sin 7TV 2 sin v

The function K,(z) is responsible for the Euclidean three-point function [28].

It is essential that the above program is possible due to the following properties of the expansion
(4.4): a) the function p(c) satisfies the condition (4.3) and the normalization of the functions Q
meets condition (3.15); b) the range of integration over / in (4.4) is symmetrical with respect to the
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substitution I — D — I. Owing to these properties, the right-hand part of the expansion (4.4) does ]
not change under the substitution (4.5). t
Thus, the final version of the partial wave expansion in the Euclidean region of coordinates is

of the form fi
: b
G(x;x;X3X4) = —2p(0,) 15 p(a) J dx dx'CH%%(x; x, x)A, (x — X )CP%4(x'x,x,) fi
W
1 h+iw o
+ %Z J dlu(o)p(a) j dx dx'CH920(x, x,x)A,(x — X)C?%(x'x;3x,), (4. 6} r
h—ico th

where A, and C°"% are the Euclidean conformal-invariant three- -point functions (2.4) and (29),
and the integrals over x and x’ are taken in the Euclidean space. i
In conclusion, it should be noted that the above derivation of expansions (4.4) and (4.6) is of
readily generalized for the fields with an arbitrary spin, for more detail see [22]. : by
d;
( 8k
5. Partial wave expansion in Euclidean space in
W

Rewrite expansion (4.6) in the notations of section 2: "
d, d, d, dy d, d;
d 4 Tl
dy dy, d, d 7 d, d, be
irr
where G

h+ioo

1
z= %Z j dlu(o) (5.14& |

and the following relation is assumed .

—2u(ao) al'ffo plo) = 94,d,d09d3dado>

see sections 9, 11. As follows from the derivation of the expansion (5.1), it can be applied to t ‘
one-particle irreducible vertex

d dy d, dy d, dy :

d; d, d, d, 7 dy {
where d, < h. If in (3.17) there are no fields with the dimensions I, < h, then the partial wav§
expansion is applicable directly to the Green function G:

1 3 dl da
d2 d4 ’ dz d4
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In special theories considered below, either expansion (5.1) or (5.2) should be used, depending on
the value of the fundamental field dimension.
In (5.1) the dimensions of fields ¢, ... ¢,, are assumed to be different. In the case when all
fields are identical, i.e. d, = d, = d5 = d,, the right-hand side of (5.1) (or (5.2)) should be added
y one disconnected graph G,(x;,)Gy(x34), Where G,(x) is the function (2.5b). This follows directly
from (3.17). In the case of identical fields the summation ), in the right-hand side of (3.17) begins
ith the term A,(x,,)I, where I is the unit operator. This term is responsible for the contribution
f the trivial representation with zero dimension to (3.13). It is not embraced by the integration
ntour in fig. 1 and, hence, it does not contribute to Y, in (5.1) and (5.2). As a consequence of
2.6), it is absent at d, # d,. In what follows we will use partial wave expansion (5.1) or (5.2) for
the connected Green function which does not contain the term G (x;,)G4(X34).
. Note, that as yet the function p(g) is not unambiguously defined. It is the function (o) rather
plo) that is fixed by the conditions (4.2) and (4.3). The function p(s) depends on the choice
bf the normalization factor in (3.14) which on account of (3.15) might be included into p(c) without
breaking condition (4.3). We will define this factor so that [5, 8, 22] the function p(s) contains only
dynamic information and goes to unity in the absence of interaction. It implies that this function
should have only dynamical poles (3.27), and the kinematical spectrum (3.26a) should be included
into the product of normalization factors of the functions (3.14). Thus, for generalized free fields
we have ‘

Pee=0,  plo)=1. | (5.3)

 This condition determines the normalization factors N(od,d,). For their calculation let the partial
wave expansion (3.13) for generalized free fields be considered. From (3.20) it follows that it may
be obtained as a result of the decomposition of the direct product of the representations into
irreducible components. The functions Q7 entering into this decomposition are the Clebsch—
Gordan kernels. The expansion (5.1), using (5.3), takes the form

x,d, x3d;
(2
; = Gd;(xl 3)Gd2(x24) (5.4)
x,d, Xad,

' and acts as a completeness relation in the Euclidean space.
From (5.4) the product of the normalization factors of the vertices and the propagator standing
on the internal line is defined. The propagator normalization will be determined by the condition

[ dxA,(x; — X)As(x — x;) = I-8(x; — x3), or A;M(x) = Ay(x). (5.5)

[
In addition let it be demanded that the functions C°#%(x,x,x,) meet the condition of amputation

”
dxA; (x5 — X)C7%2(xx,x,) = C*%(x3%,x,) (5.6)

and analogously in the arguments x, and x,. In graphical notations we have

x,d, xyd;

P ' = X3& s ) (5-63)

Xpdy xd;
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where the point stands for the leg x; amputation. The function C*'*2 satisfies the orthogonality
relation, see (2.6). Taking into account (5.5) and (5.6) it may be written in the form

4,
X10q X203 1
= 5[5¢1‘102Ao‘2(x12) + 601526(x1 - x2)]9 (5-7)
d;

where 4§, ,, is defined by the condition . d,, f(¢") = f(a), ¥, was defined in (5.1a) and the
internal lines stand for inverse propagators. It should be noted that an additional coefficient will
appear in the second term in the right-hand side of (5.7) provided that the conditions (5.5) and
(5.6) are rejected.

The calculation of normalizations from the conditions (5.5)5.7) is given in refs. [32, 5], see
also [5, 6] and [56], where the normalization factors are calculated in the presence of spinor and
vector fields. In the considered case of scalar fields we have (the normalization from refs. [8, 56]
is used):

T(h
o) = 42w LD o), (59
T(+s) T(D—I-1) -
") =T TD—I+s-1 ] (5.9)
N(od,d;) =
I+d,+dy+s—D\ _(d,+d,—1+s\ [l—d;+d,+s\ [l+d,—d,+s 1z
o s ) G o e A W,

2D—l—d1—d2+s D+l_d1—d2+s D—l_d1+d2+s D—l+d1—d2+s
2 2 2 2 (5.10)

where p(o) is the weight function in (5.1a) and n(g) is the normalization factor of the propagator
(2.5). The principal relationships required for calculations are given in Appendix 3. This nor-
malization differs from that in refs. [3-7, 32, 37]. The functions C°"%, A, and u(o) are related to
the analogous functions (C’, A’, i) of refs. [3, 7, 32] and the functions C”, A”, u” of refs. [5, 6, 37]
by the relationships

C=2"52C =(4m)?h - 2h U+ dr+di2or A=A, =2""1A7, p=2"1y' =(4m)~ 4" 2y,

Using orthogonality relation (5.7) as well as (5.6), the function p(o) can readily be determined

dy 4 dy
d, d; d,

4

[ T O e

Equations (5.7) and (5.11) are well defined for the values of I lying on the integration conto f

in (5.1a), i.e. I = h + iv, — o0 < v < o0. One defines them for any complex values of I by the ang
lytical continuation from the integration contour. The possibility of this analytical continuati
is ensured by the analytical properties of function p(s). Now relations (5.7) and (5.11) may

€
(5
{.
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used in the entire complex plane of the dimension I Note that with this method of determination
of p(0) the first graph in (5.1) does not contribute to (5.11) even at [ = dg.

Besides (5.1) or (5.2) we may write partial wave expansions by two more methods. As a matter
of simplicity, assume that there are no contributions with the dimensions d, < h. Then in addition
to (5.2) we have

d, d,
dy
d3
d, dy ‘
ﬂ = Z pi(o) o = ZPZ(‘T) . (5.2a)
4 d, 4 o
d,
d3
d; dy

Generally speaking, the functions p, p, and p, are different. In the case of identical fields function
(5.2) is symmetrical in relation to the coordinate permutations, so that one should assume
plo) = p;(6) = p,(0). As a result we obtain an additional linear homogeneous integral equation
for p(¢), a so-called crossing-symmetry equation [3-7, 29, 31]

(5.12)

At present the complete analysis of these integral equations has not been fulfilled.

Now let it be assumed that one or several fields entering into the Green function G(x; ... x4)
are tensors. Then the expansion (5.1) comprises the three-point functions C7'7273(x,x,x3) with
two or three tensor legs. These functions depend on several arbitrary constants A, B,C,..., see,
e.g (2.10), which enables us to determine several mutually-orthogonal sets of the three-point
functions [56]. Consider, e.g., the functions (2.10) depending on two constants. Properly choosing
the constants A and B, two mutually-orthogonal sets of these functions may be determined

[

N OMOER

d

for any values of ¢,, o, and fixed o. Generally speaking, both sets contribute to the partial wave
expansion of vertices. If the functions of each set meet the orthogonality condition, along with
(5.13) we obtain [56] three relations between four constants A;, By, A,, B,. Hence the functions
{A;, B;} may be chosen in different ways. Using this ambiguity, two orthogonal sets {4,B,} and
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{A,B,} may be chosen, so that the partial wave expansion of the vertex given may comprise only
one of them. In section 7 we will illustrate it by a special example.

In conclusion, it should be noted that the partial wave expansion of type (5.1) or (5.2) may also
be obtained for the higher Green functions. In particular, the analog of expansion (3.30) in the
Euclidean space is

d3. ds
d, d, d, d,
a ag.
= 2. ploy0,) v v . (5.14)
d, d, 1% dy d ,

5

Here it is assumed that the dimensions d, ...d5 > h.

6. Green functions containing conserved tensors

6.1. Three-point Green functions

Consider the Green function

ju(xa)
Gu(x1x2x3) = <0| T¢d(x1)¢;(x2)ju(x3)lo> = % (6.1)
X,d

where ¢,(x) is a charged scalar field, j,(x) is a conserved current. This function meets the generalized
Ward identity [57]

002G (X1 X3x3) = —e[d(x; — x3) — d(x; — X3)]Gx3) (6.2)
which fixes the current quantum numbers
o;=[D~-11). . (6.3)

In accordance to (2.9) the general expression of a three-point function with these quantum numbers
is

1 1 - 1
= 3 6.
G,.(xlxzx3) g,{d) (%xfz)d_'” 1 {(%xga)h— i (3,’5 (%x%3)h— 1 } (6.4)
where g{(d) is the coupling constant. Substituting (6.4) to (6.2) we find that in normalization (2.5)
and (5.9, 10) it equals
I'(d)
T'th —d)
If the Green function contains spinor or tensor fields, then it depends on two unknown constants.
The Ward identity fixes only one of them, see (6.9, 10). The second constant corresponds to the

transverse part of the Green function and remains arbitrary (i.e. it should be found from dynamics).
Let O,, and O,, be arbitrary tensor fields. One then writes,

0] TO, (x1)0,,(x2)j,(x3) [0> = 0,  if o, # a,. (6.6)

gid) = = (2m)"°T(h — 1 (63)
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As it follows from the Ward identity and relation (2.6)
5;53 <0| Toa,(xl)oaz(xz)ju(xs) |0> = —e[5(x1 — Xx3) — 6(x, — xs)] <0| Toal(xl)oo'z(XZ) |0>
(6.7)

It should be stressed that this property is not fulfilled for all fields. It holds only for those Green
functions which satisfy the Ward identity without Schwinger terms. There are, however, fields
whose equal-time commutator with current contains Schwinger terms. In this case it is possible
that the condition for the theorem (6.6) may not be satisfied. As shown in [58], each scalar field
¢{x) may be associated with the set of tensor fields 04, . ,(x) with the quantum numbers

g, =(d+s,59). (6.8)

The equal-time commutator [jo(x), 0%(y)] of such fields in addition to a usual term 5(x — y)04(y)
resulting in the right-hand side of (6.7) comprises terms proportional to the field ¢ (x) and its
derivatives. The general expression for Green function containing these fields has been obtained
by us in [58]. It comprises contact terms and is of the form*

Gu.m...us(x1x2x3) = <0| TOZI‘__"s(xl)ju(xz)(p;(xg |0>
S - s 1 Rx2 1 X1 1
= [gl{d) +J's(4)]2 /2{(‘%)67%3)"—1 ox I:%xfz)h—l (A#I_..us(x2x3)—— traces)il}(%x%s)d_hrl—

I'(s) (=7

sf2+1 h
IO & T+ )
x2 x3 . (X13)vea,  K1ahy, 1
X [5,1“5”---5»-,(5(361 X5) P S traces (———%x%s 4 (6.9)

where g5(d) and f(d) are the coupling constants of the longitudinal and transverse parts. The sum
¥i-, includes permutations of the indices v, @ v, 2< i<k k+1<I<s as well as of the
index v, with the rest. The Green function (6.9) meets the Ward identity with Schwinger terms

T(s)[(h — d)
X2 — — g5 s/2+1 D .
au Gu,vl .. .vs(x1x2x3) g}(d)z (27[) r(h + s — l)r(d) (6.10)
S ( - 2) k by X2 ('x )Vk +1 (x )v,
X k; 0 3% 0%28(xy — X3) 1;%3 ... x‘i — traces |GAX;3).

The transverse coupling constant does not contribute to (6.10). Calculations required to derive
(6.9) and (6.10) are given in [58] and in more detail in [8]. The Wightman function of these fields
is transverse

oW,

H.vy .

vl X1X2x3) =0 (6.11)
and is equal to

Wi, ... v,(x1x2x3)

1 (6.12)

1 o 1
=[gi@) +fs(¢n]2$/2{(%x§3)h_1 6:2[(%%2),,_1 w::...vs(xzxs)—traces)]}W-

* This expression differs from the analogous one in ref. [58] in the coupling constant redesignation.
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In what follows an example of the theory will be given, where the fields 0%(x) along with the field
@4(x) appear in the operator product expansion of states j,(x, )@ (x,) 0.

6.2. Four-point functions

Consider the Green function of four fields

d, Ja
Gulxixzx3xe) = <O| T ()03 (52)160x)j,0x6) [0 = \@ 613
5" d

where ¢,, and @, are the charged scalar fields, y; is the neutral field with dimension 8. A general -
conformal-invariant expression for this function may be written similar to (2.12) in the form [37]:

G (x1X3x3xy) = {‘fh_le"(xlxs)F(é, n — ﬂh—lef(xzxs)F('l, f)}Gdlda(xlxzxs) (6.14)
where
L '
d -
Gdlda(x1x2x3) = <0| T, (x)@dx2)xs(x3) |0> = gdldécdlda(xlxzx:i) = 4.@\‘ , (6.14a)
d
F(&,n) is an arbitrary function of the variables (2.11) and the value K, is equal to
2 h-—-1 . h
xa _ & (_Xis x4 _ 2
K34 (x1x3) 0, (xﬁx%,;) A54(x1X3), Q, = T’ (6.14b)
The Green function (6.14) meets the generalized Ward identity
0,°G(x1X,x3x4) = —e[d(x; — x4) — (x; — x4)]Gd1da(x1x2x3) (6.15)

from which an additional equation for the function F(&, ) may be obtained. It is evident, however,
that from the Ward identity this function cannot be determined unambiguously, since to G,
may always be added an arbltrary transverse part G, such as 0;*G}/(x;x,Xx3%,) = 0. The 51mplest ;
example of the conformal-invariant transverse functlon is

G(x1x3x3%4) ~ { K (x1X;) + K3*(x,x3) + K4(x3%1)} GM¥(xy %, x3). (6.16)

To find a general solution of the Ward identity (6.15), one substitutes (6.14) into it and use the
relationship

O K (x1x,) = —e[d(x; — x4) — 0(x; — x4)]

Under the assumption that the function F(&, 1) is not singular at the points ¢ = 0,5 = 0; & = 1, :
n = oo and ¢ = o0, = 0, we will obtain the equation

_ 1_ 11 oF(&,n)  0F(n,¢)
(h 1)(<§+n 1)[F(é n) — F(ﬂ,f)]+(€+” 1)[6 2 (e ]
n aF(f, n) & 0F@n, &) _
* 2[5 om0 J O
with the boundary conditions
F(1, ) = F(o0, 1) = 1. (6. 18)

(6.17)

P ORRE R PN g v st <+ o,
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The general solution of this equation may be presented as [37]

F&n) =¢ 1_h|:f1(A) +(h — I)I ™ (e, A(T) df] (6.19)

where

1 1 A A% 1 —2
A=n1/2<E_E_1), B(‘C)={5+ —4—+;—1} .

f,(4) and f,(t, A) = f,(A4, 7) are the arbitrary functions. The symmetric solution is

F&n) = F(1, &) = f(/&n — /& — /0o,

fis an arbitrary function.

In a similar way a general expression of the Green function, including an energy-momentum
tensor (its quantum numbers are o7 = (D, 2)) may be found. Consider, e.g,, the Green function
GL(x1%3%3%4) = O] Tox1)@alx2)xs(x3) T,n(X4) |0>. Its general expression is [37, 8]

va(x1x2x3x4) = {F(&,nKidx;x,) + ¢, MK (x1x3)

+ o(n, é)Km(xzxa)} <0| T(pd(xl)(pd(xZ)X6(x3) |0> (6.20)
where
x2 h—1
KZ(xyx,) ~ (;%—41?2%:) {A%4(x,x,) — traces}.

The most interesting case is the one of identical fields when d =  and (6.20) is symmetric with
respect to any substitution

Een  E-1/8n-n/E E-Emn—1/n (6.21)
i.e. the functions F and ¢ meet the conditions
F(En) =Fm.&;  F&n = ¢/ Em) = ¢(1/n/C)- (6.21a)

These conditions are equivalent to the relations of crossing symmetry of type (5.12). If the function
(6.20) is presented in the form

4, T;". dy or
s d ’ s d

then for d, = d = 6 we have

or

prlo) LWCX =3 prl)
5 (2

(6.22a)
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This relation is equivalent to the conditions of symmetry (6.21a).
On the other hand, substituting (6.20) to the Ward identity [41]

6:4G:v(x1x2x3x4) = _[5(—"4 — X)) + 8(xq — x2)03 + O(x4 — X3)0y?

d d o
- D 034 3(x4 — xy) — 56’{“5(x4 - X;) — Ba’v“é(x4 — x3)]G(x1x2x3) (6.22b)

we obtain two differential equations for the functions F(,n) and $(&, n) with the boundary condi-
tions

F(1, 0) = F(o0,1) = ¢(0,0) = (1, o0) = $(c0, 1) = 1.

It is essential that in contrast to (6.17) these equations are now completed by the conditions (6.21a).
Whether their solution is unique taking into account these conditions, has not yet been clarified.
Note, however, that if the symmetry of the functions ¢(&, ) is also demanded: &, n) = P, &),
they allow the only solution F(£, 1) = ¢(&, 1) = 1 and Green function (6.20) is determined un-
ambiguously.

6.3. Partial wave expansion

Now represent the Green function (6.14) in the form of a partial wave expansion. Since it has
one vector leg, its expansion consists of two terms (see the end of section 6):

dl j,, d[ 0 d1 g
6 d ¢ 5" d ° F i d

where C, and C, are the functions belonging to two mutually-orthogonal sets. According to
section 5 they may be chosen in different ways. It is appropriate to determine them so that one
of them, e.g. C, may be transverse. Such functions were found in [56], see also [8]

!
X,0;

o 2(s+3)/2
C3%(xyx,%3) = E\J\_@ = (Z—n)"—Nl(a’ DD — 2 +1—d—s), 1]A(x,x,x3), (6.24)
X3d
X20; 2
o X0 25 (D—2—l+d+s)
C2 Jd(x1X2x3) = Wﬂ-@ = WNz(O-, d)[s (l — d) s I:IA(XIX2JC3). (6.25)
X3d

Here the notations
A(x1x2x3) — (%xfz)—(D—Z+l—d—s)/2(%x%3)—(l+d—s—D+2)/2(%x§3)—(D—2—l+d+s)/2’ (626)

[A4, B] = AL2(x,x3)[ 45! ,.(x2%3) — traces]

1 S
+ B XT[kZI X120 4 p{X2x3) — traces], (6.26a)
12 =

B I ol o s
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1
Ned =G TysdrT—d+s-2)
T((I+d+5—D)2)T(D +1—d+5)/2T(D — I+ d+ s)/2)T (I +d +s)/2)) /2 (6.242)
T(d—1+3)2)T({(I—d+s)/2)T(2D —1—d+s)/2T(D—I—d+5)2) '
(=D —1—d+s—2(D —1—d—5)
Nolo,d) = D—1-1
D+1—d+s I4+d+s-D I+d+s D—l+d+s
e

were used. The calculation of normalization factors is discussed below. The function (6.24) satisfies
the amputation relation of type (5.6) with respect to a tensor rather than a scalar leg (this proves
advantageous for the calculations of section 7), and the function (6.25) meets that with respect to
both scalar and tensor legs. Let us point out two useful properties of the function C,. First, it
should be noted that they are transverse at any ¢

6,’52C‘§_',’,{’fmmus(x1x2x3) =0. (6.27)
Owing to this property the second term in (6.23) does not contribute to the left-hand side of the
Ward identity, so that from it only the function p,(¢) is determined. An explicit expression for
p;(0) is given in the next section. The function p,(¢) remains arbitrary. It may be related to the
arbitrary functions entering into (6.19).
Another important feature of the functions C, is the following. They are different from zero at

s 2 1, and at s = 0 there are no transverse functions. Due to this the second term in (6.23) does
not comprise a scalar contribution. It is present only in the first term and, hence, is unambiquously
determined by the Ward identity. An expression for the function p,(¢) at s = 0 may be obtained
from (7.7). In particular, from this it follows that the function p,(6)|;=o has a pole at the point
I = d. This pole determines the asymptotic behaviour of the Green function (6.13) at x; — x;
(or x, = x,), provided that the poles of the function p,(c) at s # 0 are assumed to lie to the right
of the point I = d. As it follows from (3.16), this is the case if d < D — 1. An explicit expression for
the asymptotic behaviour may be obtained from (6.14), and the boundary condition (6.18). In
particular, in the limit x, — x5 we have [37, 5]

€ x 33 [ s

Gu(X1X2%3%4) |2y %, = —/lu"(xsxz)liﬁ:l G%(x1x;X3).
Qp X24X34

Consider now the calculation of the normalization factors (6.24a) and (6.25a). The difficulties
originated here are primarily related to the presence of two different-structure terms in (2.10).
When substituting (2.10) into the amputation condition (5.6) functional equations for the coeffi-
cients 4 and B are formed. A general solution of these equations was obtained in [56]. A general
expression of functions (2.10) satisfying the amputation condition over both tensor and scalar
legs was also found there (see Appendix 4).

Another difficulty is due to the fact that the tensor leg is of the canonical dimension /; = D — 1.
This results in the absurd diverging expressions in the intermediated steps of integral calculations
over the internal current line. Hence it is advisable to introduce two additional sets of the functions
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C, and C, determined by the relations [56]:

where I is the right-hand side of (5.7). It should be stressed that the functions €, and C, cannot
be obtained from (6.24), (6.25) by the amputation of a current leg. In more detail these functions
are described in Appendix 5. In contrast to (5.6a), points in (6.28) denote the formal substitution
l;->D—1;=1 and d - D — d rather than amputation. The internal lines endmg in a pomt
should be correlated with d-functions. An explicit expression for the functions C, and €, has
been found in [56]:

%0 O e _
= W NI(O', d)[(l - d ot S), 1]A(x1XZX3), (629)
Xx3d
X,6; = (1,1)
X, _aerae 3D—1—-d+s—4 )
[ (2 )h Nz(o' d){ D — I —d— 5 s I}A(xlxzxa) (6.30)
x;d=D—4d

where A(x;x,x;) = (3x2,) U"472(4x3 )~ rd=sN2(Lx2 y0-d=972 and A'(x,x,X,) is obtained from
A by the substitution d » D — d,
N.(0,d)= T((I+d+s)/ 2T (1 —d+s)/2)T (I +d+s— D)/ 2)I'((d — I+ 5)/2) 1/2
U D=\ DT+ d+s)2)T(D—I—d+ )LD —I—d+s)y)T(D+I—d+s)2)|

(6.29a)

1

Ny(o,d) = m

d—1)2D —1—d—2)
"W —I-d-s)2D—l—d+s—2)D+l—d+s—2—d—ys)

2D — Il —d+ s\ fd—1+s\ [l+d+s\/D~1+d+s\] !
e (L (EEZEL e

The function (6.29) meets the amputation condition over both scalar and tensor legs, while (6.30)
satisfies only that over a tensor leg. Using the relationships (6.28), for the functions p,(s) and
pa(o) we have

d, o d,
£1(0) ““O/ _ ’ (631)
Y yi Y
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dy gi d,
g a &
p(0) '\N\O/ = . (6.32)
_ _ Sy

The above said is generalized with certain additions for the Green function (6.20) including an
energy-momentum tensor. Let its partial wave expansion be briefly discussed. It comprises three-
point functions C**™(x,x,x;), where o, = (D, 2) are the quantum numbers of the energy-momen-
tum tensor. For ¢ = (I, s), where s > 2, these functions have three independent structures and,
hence, depend on three coefficients 4, B and C. For s = 1 there are only two independent coeffi-
. cients. Similar to the above-said mutual-orthogonal sets of three-point functions may be deter-
“mined, one of the sets consisting only of transverse functions which do not contribute to the

Ward identity (6.21b). For s = 0, 1 there exist no transverse functions. It means that from the
Ward identity scalar and vector contributions to the partial wave expansion (6.22) can be unam-
biguously determined. (In the case of identical fields there is no vector contribution due to the
anti-symmetry of the function (2.9) for odd s.) The scalar contribution has been found in our
work [5]), see also [6, 37], and in normalization (5.8-10) it is equal to

8D g N(d,do)
D—12nP° I'(d - d, + 8)/2T(d + d, — )/2)

Ap(P—ttd -8\ (D—1—dy+5 LI +d— D+ 2)2)
2 2 T(2D — | — d + 2)/2)

N~1(1d,8)N ~Y(o,ld)

pr{l) =

1
“U=aD—=1-43

{55720 =06 + dy = D)= 47, + 40 — 1

+$ﬂ—m04—mmw—anﬁw—m}

where f; =I((0 —d, +3)/2)T(D — I —d, + 0)/2T(D +dy, —d — 6)/2)[((dy + d — J)/2) and
f, is obtained from f; by the substitution d, < 6. The contribution of higher spins can be found
from the relationships of ref. [6].

7. Special solution of Ward identities

This section presents a more detailed investigation of two four-point Green functions: with one
current, see (6.13), and with two currents

Guv(x1x2x3x4) = <0| T(pd(xl)(P;(xZ)ju(xs)jv(x4) |0>

‘ 7.1
6Z3Guv(x1x2x3x4) = —e[d(x; — x3) — o(x; — x3)]G(x1X,X,4). (7.1)

In both cases the functions p,(c) in (6.23) and their contribution to the operator product expansion
of the states j,(x,)@4(x,) |0> will be found.

The function p, (o) in refs. [5, 6, 37] was found by the authors directly from the Ward identities
(6.15). Here another method of its calculation is used. Note that all special solutions of the equation
(6.17) differ only in the transverse part, i.e. in the second term in (6.23). Hence to find the function
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p1(o) one may use some special solution and the expansion (5.11) or (6.31). As a special solution
it is appropriate to choose the analog of Green functions in two-dimensional space.
As is known, in two-dimensional space there are two conservation laws:

O, (x) =0 and £,y0,,(X) =

Accordingly, there are two charges. In the case of scalar fields, however, the second charge is equal
to zero, hence the second Ward identity is of the form ¢,,0;*G,(x;x,x3x4) = 0 and is the same as
for the function (7.1). From this identity the transverse part is determined. Substituting (6.19)
into it, we find [37]

F(¢,n) =1

ie. G (x;x;x3x,) is determined unambiguously. Just in the same way the Green functions with .
an energy-momentum tensor and any number of currents may be found. In particular, for the
function (7.1) we have:
el
G”v(x1x2x3x4) 2n )z '1,1 (x1%2)A53(x 1 X5)G (x4 2)

and in the general case

<0| T?dl(x1)¢;(xz)Xa(xs)jm(ZJ---ju,,(zn)|0> (2 y ul(x1x2) '1 (x1x2)Gd1d6(x1x2x3)-

The analog of these solutions in the D-dimensional space is*
Gu(x1x2x3x4) =. K"f‘(xlxz)Gd‘d‘s(xlxsz, ‘ (7.2)
Guv(x1x2x3x4) = K:’(xlxz)K"f“(xlxz)Gd(xl2). : (7.3)

We will assume that d > 3D. Then the partial wave expansion is applicable to Green functions.
In what follows it will be shown, that this assumption is valid, see (7.9). In relation to d,,d no
assumptions are made.
Let the partial wave expansion of the Green function (7.2) be found. Consider the function
d,

i
0%(x1x5x3) = W . (7.4)
""5"‘ xyd ]

Substitute here (2.9), (7.2) and (6.14a). The integral appeared is calculated using (A3.2), (A3.9).
After calculation we have

Q0(x1X2X3) = egy,q5(27) h2(s+2)/2{N(d d5) I''D —d +d, — 5)/2)}

I'(d — d, + 9)2)

T(l+d+s—D)2) (T(D—1—d,+5+s)2)
(@D —1—d+s)y2)| T({+d,—3+5)2)

x[(D—2+1—d—s)1]A(x;x,X3).

x[[@d—I+s)(D—-2+1—d+s)]7!

N(o,D—d,, D4

* General solution of Ward identity for Green function was found in ref. [59].
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Here notations (2.10) and (6.26) are used. Note that the right-hand side is proportionél to the
function (6.24). If pg (o) is determined by the equation

Q;(x1x2x3) = PG,,(U) W

* we obtain [56, 8]

d Ju d Oj
5 a7 5 d

 where

X40;

x3d

_ 1 I'(D —d+d;, —9)/2)
PGu(O') = ﬁegdldé{N(dldé) F((d _ dl + 5)/2)

« 1 T +d+s—D)AT(l —dy + 6 + 5)/2)
d+s—0DD—-2+1-d+s (2D -1 —d+ 5)2T(D — 1+ d, -8+ 5)/2)

The same result can be obtained using the equations (6.31) and (6.32). From (6.31) we will find the
function p,(0) as (7.7) and from (6.32) we will obtain p,(c) = 0. Thus, the expansion of Green
function (7.2) consists of one term. This always may be achieved by redefinition of the function
C, » C, + f(o, d)C, entering into (6.23), and by the proper choice of C, so that the second term
may be compensated. Proceeding from these considerations we have chosen the function C,
entering into expansion (7.6) in the form of (6.24). Note that it is possible since the condition for
amputation over the scalar leg is not included.

Expansion (7.6) is in agreement with the hypothesis of a discrete-dimensions spectrum, made
in section 3, see (3.17). Indeed, when substituting (7.7) into (7.6), allxxoot branch points of the
factors N(od;0) and N, (o, d) are cancelled. This implies that the function (7.2) meets the field algebra
hypothesis. If expansion (7.6) is analytically continued to the pseudo-Euclidean space, we will
find that the dimension spectrum in the expansion of type (3.29) is

d,=d+s (7.8)

ie. it is contributed only by the fields 0%, considered in section 6. It is evident, however, that the
- operator product expansion of type (3.17) for each of the states Jux1)@4x;) |0, xs(x1)@4,(x2) |0>
may contain a more completed set of the fields O,,, and the fields 0¢ form, according to (2.6),
only the intersection of these sets. In order to find all the fields contributing to the states
Jux1)@a(x2) |0, an expansion of their scalar product, i.e. the Green function (7.3), should be
examined.

According to (3.16) for the states j,(x)@,(x,) |0> to be positive the condition dy 2 D — 2 + s
should be fulfilled. With the account of (7.8) from this it follows*

d>D—2. (7.9)

* As is shown in section 16 the dimensions of the fundamental fields are limited by the condition d < h, so that the results of this
section can be applied either to compound fields ¢, for which d > h or in the case D < 4. In particular, in the Thirring model (D = 2)
there exists an analog of the fields 0% They contribute to the operator expansion of the product j,(x;)yrx,), where , is the spinor

}N“(adlé)N[‘(a, d)

7.7)

“  field of the Thirring model, see section 14.
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In more detail this condition is discussed in section 12, where coupling constants of the fields
0¢ are calculated. _
Consider a partial wave expansion of the Green function (7.3). Using relationships (A3.2),

(A3.9) we have (for more detail see [56])

Julxz)
X0 4
b2
Xx3d

_ 1 2e? I'(d) o

= (" G =g A@P — 1= d =2+ B-5:GD ~ I ~d +5 - 4)
x[(l—d—s)D—-1—-d—-—s)D—-2+1—-d+s)2D—-1—d+s—2)]?!
x [(D—=2+1—d—5s),1]A(x;x,x5) (7.10)

where points stand for the substitution d; > D — d; = 1, d > D — d (rather than amputation)
and internal lines stand for the é-function, see (6.28); A and B are the arbitrary constants. When
calculating the integral in (7.10), the uncertainty 0 x oo arises. For its resolving one should perform
the substitution h — 1 — (d; — 1)/2 in the expressions for K;*(x,x,) and the function {4, B}
and then pass to the limit d; > D — 1 in the final result.

From (7.10) it follows that the expansion of the Green function (8.3) comprises, as in the case
of (7.6), only functions C,. Indeed, substituting function (6.30), for which A/B =
—s(3D —1l—d+s—4)/2D ~1—d - 2) to (7.10) we find that Q4 goes to zero. Defining
Pg,.(0) by the equation

g d Ju
d = d

we find [56, 8]
( _ ( _ )s +1 e2 l-(d)
Peul0) = "8 G Tt = d)

xF((l+d+s—D)/2)F((D—2+l—d+s)/2). ,1
I'd—-1+s+2/2(2D -1 —d+5s)2) @d+s—HD—-2+1—-d+s)

All the above-said on the expansion (7.6) is also valid for (7.11).

Ni%(o,d)

(7.11)

8. Dynamical equations

In the foregoing sections we have discussed all limitations for Green functions resulting from
the conformal group kinematics and the axiomatic requirements as well as from the current and
energy-momentum conservation. The next problem is to find a solution of dynamical equafions
in the framework of these limitations. Let this problem be formulated more accurately. As shown
above, all n-point Green functions for n > 4 can be represented as partial wave expansions. This
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form of the Green function representation takes into account all consequences of the conformal
kinematics. Further analysis is to be made on unknown functions p(¢) which should be found
from a special dynamic modél. Note, however, that these functions are not completely arbitrary:
axioms of the field theory impose restrictions on their complex-dimension plane analytical proper-
ties. As shown, all poles and branching points of these functions lie on a real dimension axis and
in addition p(s) — 0 when | — co. Everywhere, except for these points, the function p(c) is analytic.
Hence, for its determination it suffices to calculate all singular points. If the function p(s) has
simple poles, then according to sections 3 and 4, this is equivalent to a vacuum operator product
expansion, see (3.17). Provided that it has branching points, this implies that in (3.17) there is also
a continuous spectrum of dimensions. Thus the problem of dynamics consists in the elucidation
of the singularity nature of the function p(c) and analogous functions entering the partial wave
expansion of higher Green functions, see (9.15) and (10.4). As it will be shown in the next section,
dynamic equations lead to the algebra of fields in the operator form (in Euclidean space). The
next problem is to find the position of poles and their residues. The position of the poles governs
the dimensions of tensor fields contributing to the operator product expansion, and the residues
are the coupling constants of these fields. In section 12 an example of Green functions (7.2, 3) is
considered for which this problem has completely been solved. In the general case its solution is
related to the problem of closing a system of equations, see below.

Strictly speaking, the above said refers to the product C’A,C%p(o) rather than to p(c). The
analytical properties of p(g) depend on the choice of normalization for the function C°. In the
normalization here accepted, see (5.8-10), the function p(c) includes “kinematic” branch points
which are cancelled by normalization factors of the function C,. This is what happens in the
examples considered in section 7: both Green functions (7.2) and (7.3) meet the algebra hypothesis,
though the function (7.7) comprises branching points due to the factors N '(od,S)N ~ g, d).
They are cancelled when substituted in (7.6). In what follows, however, we will, for short, consider
only simple poles of the functions p(a).

We will proceed from the Lagrangian renormalized field equations [60], see also [61]. There
are several physically meaningful Lagrangians, which in the limit of zero mass allow a conformal-
invariant solution. This primarily refers to the Lagrangians with a dimensionless coupling constant
free of derivative couplings. A formal proof for the unrenormalized or classical field theory is
given in refs. [23, 62]. In our approach the conformal-invariant solution is realized as a Gell-Mann—
Low limit [63] (see also [64]) of the theory at small distances with a finite charge renormalization.
As shown in [65], the scale invariance in this limit results in the conformal invariance of the
theory.

The simplest Lagrangians with dimensionless coupling constants are: L;,, = AWy ¥, where
¥ and ¢ are the spinor and pseudoscalar fields in four-dimensional space (see Appendix 6);
L., = Ap* oy and 1gp® where ¢,y are the scalar fields in six-dimensional space. The method
developed below will be applied just to these interactions. Note, however, that the limitation to
trilinear Lagrangians is not restrictive of principal nature, since any Lagrangian with a higher
order in the field may be reduced to a set of trilinear interactions. For example, in the Ap* theory
one may take ¢ = y and consider the interaction A@?y. In a similar way a four-fermion interaction
can be represented as an interaction of two spinor fields with a scalar or a vector. This can be
examplified by the Thirring model, where the interaction of four spinors can be realized via a
conserved current. Certainly, this reduction of Lagrangians results in an increased number of
initial fields.
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As an initial interaction consider the Lagrangian
Ly = 20" 0y (8.1)

where ¢ = @ x), x = xs(x) are the scalar fields in a D-dimensional space. All the results are
generalized for the Yukawa interaction, see Appendix 6. We will use the Euclidean field theory
formulation [47]. As to the dimensions 4, d in this and foregoing sections it will be assumed that

h—-1<d é<h (8.2)

A system of renormalized field equations was obtained by one of the authors (E.S.F.) in ref.
[60], and is of the form

(8.3)

(8.4)

(8.5)

(8.6)

8.7)

Here solid lines stand for the charged field ¢ (x) and dashed lines are given for the neutral field
xs(x). The T'™s are the one-particle irreducible vertices. The vertices M{™ are obtained from the
connected Green functions by subtracting from them all graphs which may be disconnected by a
cut made across one line. They may also be expressed via the vertices T'™, if the latter are added
by the graphs which may be cut along one line in the longitudinal direction. We have, ¢.g.

(8.8)

where the sum is taken over all possible divisions of dashed legs into the group k; ...k, and
I, ...l and their symmetrization. The meaning of the vertices R™ and Ry™ is seen from the equa-
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tions (8.5) and (8.7) which serve as their definition. It may be shown that in the perturbation theory
these vertices are defined by the sum of graphs uncut along two lines in the transverse direction, e.g.

(8.9)

It is essential that the system of equations (8.3)~(8.7) is conformally invariant only in the limit
of infinite renormalizations, ie. at z, = 0. It should be taken into consideration that for the
interaction of scalar fields of type (8.1) this condition is fulfilled in a D-dimensional space for
. D > 6. Nevertheless, calculations will be performed for an arbitrary value of D.

Let the limit z, = O be taken. Equation (8.3) becomes homogeneous. All infinite renormaliza-
tions and the required resolution of the uncertainty 0 x co appearing in the limit z, = 0 have
been effectively performed due to the introduction of vertices R™, see [60]. Now it can readily
be seen that the resulting system (8.3)~(8.7) is conformal-invariant. For this it suffices to use the
transformations (1.1, 2) and the transformation properties (2.3), (2.4) as applied to Green functions.

It should be noted that in a skeleton theory the equation (8.3) becomes the condition of self-
consistency and can be used for the calculation of coupling constants. Indeed, if one substitutes
(89) into (8.3) at z; = 0 and restricts himself to the first term, the bootstrap equation discussed in
several works [38-43] is obtained

(8.10)

This equation along with equations for the propagators (8.11, 12) may be used to determine the
field dimensions and coupling constants. As shown in [42], all integrals over the internal lines
converge, provided that the field dimensions lie within interval (8.2). Outside this interval the
integrals should be defined by the analytical continuation over the dimensions d and 9.

Equations (8.3)(8.7) should be added by an equation for the propagators which will be written
in the form [60] :

R OICEFONGECS
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where points stand for amputation, see (5.6a), and the index u is given for the external momentum
p, derivative. These equations play the role of normalization conditions, see section 9.

Now let the equations for tensor fields which will be referred to as O, (x) be given. They may
be determined as a renormalized limit of products of the type F(x,y) = D,(id,, 10,)o(x)x(y).
where D, is the tensor differential operator. Let

0,(x) = lim z,F (x, y),
yox

where z, in the renormalization constant, z, — 0. Resolving the uncertainty 0 x co as in the
case of (8.3)«8.7), we have

(8.13)

Similar equations may also be written for neutral tensor fields. Conserved currents as well as energy
momentum tensors are of special importance among them.

In conclusion it should be noted that the above-given form of equations is most advantageous,
if the dimensions d, § are limited by the interval (8.2). As shown in section 5, in this case the partial
wave expansion is applicable just to one-particle irreducible vertices. If the dimensions lie outside
this interval, it is more appropriate to represent the system (8.3-7) and (8.13) as equations for
connected Green functions, see section 10.

9. Diagonalization of dynamical equations

Consider the equations (8.4, 5) at m = 0. The results will be generalized later to the case of
arbitrary m. Introducing the notations R{” = R,, M¥ = M,, T''® = T"_, we have

P
-

92)

The equations (9.1, 2) are diagonalized [2-7], if their constituent vertices are represented as partial

wave expansions .
o0 X Ol em i) 03
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For the functions p,, and pg, we find from (9.2)

Pr(01...0,) = Pu (01 -..0,) — Pr(0)PM (O - - a,)- 9.5)
In the derivation of (9.5) the orthogonality relationship (5.7) and its generalization
Oy
g T |

_____

where 2 < k < n was used. In the special case n = 1 we have [2]

PRI(O')
1 - PRi(O').

From this it follows that the function p, (o) has poles at the points ¢ = o,, wWhere Pr (0, = 1.
According to sections 4, 5 each pole is associated with the field with quantum numbers o,. These
fields enter into the operator product expansion of the states @,(x;)xs(X2) |0). In what follows
we will show that each pole of the functions py (o) and py (04 ... d,) with respect to the argument
o, is responsible for the field O, determined by equation (8.13).

First of all let the equation (9.1) be considered for n = 1. Its right-hand side can be written as
a limit of the quantity

pum,(0) =

(9.6)

where s = 0, | — d. From (9.1) we have

Pr(Oo=wo) = 1. 97
From this it follows that the quantity

4
”

(9.8)

N
o

A s 9.9)
where
d
A= —g a Pr,(0) . (9.9a)

0=(d,0)

Now the equations (9.1) can be written in the form

(9.10)
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Thus from the system of the equations (9.1, 2) the auxiliary vertices R, have been eliminated.
The next step is to express vertices M, via I', and to obtain equations connecting only the vertices
I', with different values of n. Note that the vertices M, and T, differ only in the graphs which may
be cut in the longitudinal direction, see (8.8). When substituted in (9.8), these graphs provide inte-
grals converging in the limit ¢ = (d, 0), for more detail see [5-6]. As a result we have

(9.10a)

9.11)

where the constant A is determined from the equation (8.11) and is equal to [3-6]
gA = —2u(d). 9.12)
To calculate A it is appropriate to use the results of (9.6) and (9.7):

lmQ_:‘; g“A-(l—d)’«M-O: 9.13)

and to represent equation (8.11) in the form

—_ a
@ =A_res Wm 9.14)

The momentum derivative ¢/0p, implies that in the coordinate space the propagator is multiplied
by the difference of coordinates. The same holds for a vertex in the right-hand side of (9.14), so
that the integral here is finite for | # d. Note that the initial equation (8.11) includes the difference
of two terms, each of them being converging. Relationship (9.13) should be considered as a means
of resolution of the 0 x oo uncertainty entering into (8.11), see also [43].

Equation (9.11) is diagonalized by the expansion similar to (9.3, 4)

..a,) ] A JZ_ ) f\"/\f\Q (9.15)

where the function pr_ meets the relation

[or(61 - 0)]* = pr. (0. .. 31).

As follows from (9.10a), the functions p,,, and pr have equal residues

res pr(6,...0,) = T1es py (0,...0,). 9.16)

o1 =(d,0) ag1=(d,0)
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Substituting (9.15) into (9.11), we find

— -1. -
gt;dso)pr,(o)—gA s proy...0y) Aﬂggs’mprm(aol---an) (9.17)

and an analogous result for the argument o,.

Thus an infinite system of dynamical integral equations (9.1,2) is transformed into a system of
algebraic equations (9.17). Their general solution was found by the authors in refs. [4-6] and is
of the form

n—1 n—2
51(‘73} {U1 l_)z(o'io'iﬂ)} { | ﬁ3(0i5i+10i+2)} oo Puloy - 0,) (9:18)

i=

p0y ... 0,) = gA‘"{

i

where p,(o) is an arbitrary function having a pole at the point ¢ = (d, 0) with the unit residue

Jes pilo) =1 9-19)

and (o, ... 0)|x>, are functions satisfying the boundary conditions
Pdoy - .. O'k)|m=(d,0) = piloy "'ak)|ak=(d,0) =1 | (9-20)

Note that the general solution of the dynamical equations (9.12) comprises the infinite set of
arbitrary functions

P1(01): P2(0103)s- .. POy - - O)s - - 9:21)

which are restricted only by the conditions (9.19, 20). The first n functions of this set enter into
each vertex I',. The presence of arbitrary functions in the general solution is due to the fact that
the dynamical equations (9.1, 2) should be completed by a set of operator conditions analogous
to the canonical commutation relations of the non-renormalized theory. They have not been
used in the process of solving equations and should be taken into account additionally. In more
detail this is discussed in section 13. It should be emphasized that in this case conserved tensors
whose Green functions meet the generalized Ward identities play an important role. They are of
particular importance in a conformally-invariant theory. In particular, it may be shown [8] that
the general solution (6.14) of the Ward identity for the current-containing Green functions ensures
the fulfillment of equal-time commutation relations

o(xo — J’O)[jo(x), (I)d(.V)] = —ed(x — y)PL)

Similar relations for the energy-momentum tensor (they may be obtained from the Ward identity
(6.21b) as well) result in the Hamiltonian equations

[H®] = i0,0.

As is known, in the perturbation theory Hamiltonian equations are equivalent to taking into
account canonical commutation relations. It is natural to expect that this property holds in an
exact theory as well. It becomes particularly important in the cases when canonical commutation
relations cannot be taken into account in their explicit form. It is this case that arises in the con-
formally-invariant theory where field renormalizations are infinite.

The above-said is readily generalized [ 5, 6] to the case of the equations (8.4-7) at m # 0. Provided
that the auxiliary vertices R™, R, M™ and M are eliminated as in the above case, we obtain
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equations, connecting only the vertices '™

Om+n o

10. Another form of dynamical equations

In sections 8 and 9 the dimensions of fundamental fields were assumed to be in the interval (8.2).
Consider now another case. Let the lower limit for the dimension of charged field be defined by
the condition*

d > h. (10.1)

In this case a partial wave expansion can not be applied to one-particle irreducible vertices but to
connected Green functions. Hence it is appropriate to use another form of the equations (9.11),
representing them as equations for the Green functions. The equivalent form of these equations is

(10.2)

where G, are the connected Green functions. To verify this statement it is sufficient to represent
the Green function as a sum of the one-particle irreducible vertex I', and one-particle reducible

* Strictly speaking the results of this section are applicable only to composite fields since for fundamental fields d < h. However
in this and the next sections we shall assume that eq. (10.1) is valid also for fundamental fields. This simplifies considerably the calcula-
tions of section 11, all the results of which can also be obtained for d < h but in a more cumbersome way, see ref. [8]. Simplifications
appearing at d > h are due to the fact that partial expansion is applicable directly to Green functions (see section 5).
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graphs, each containing lower one-particle irreducible vertices I'y, k < n — 1. The function G, 4,

entering into the right-hand side, should be represented as a sum of the vertex M, ., and the
graphs which may be cut in the transverse direction. E.g., for n = 1 we have

(10.3)

Then it should be taken into consideration that the last four graphs in (10.3) do not contribute
to (10.2). As a result the equations (10.2) prove to be equivalent to the equations (9.10). The same
case takes place for any m and n.

Another way to obtain (10.2) is to use the system of equations for Green functions obtained in
[61]. This system of equations is used in ref. [3] for the A®° theory. We won’t present the initial
equations [61] (see also [3]) and will give only the result of ref. [3] (solid lines stand here for the
neutral field ®,)

. g .
. =A res :
: o=(d,0)

where

JodpCaPoiad

Taking into account that

we again obtain equations in the form (10.2).
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Hereafter we will proceed from the assumption that the dimension d is in the interval (10.1)
and examine the equations (10.2). All integrals over the internal lines in the cases when they diverge
should be determined by the analytical continuation from the convergence region. Now an
expansion analogous to (9.15) is valid only for the connected Green function

.. 0,) . gy Uz.‘.%f\-’\@‘ (10.9)

where the function p;_ meets equations (9.17). In what follows it will be assumed that the general
expression (9.18) refers to the function pg, .

11. Analysis of general solution of equations

11.1. Tensor fields

Consider the equations (8.13). Let the dimensions of all O, fields be assumed to lie in the
interval

I, > h. (11.1)

Similar to section 10, represent the equations (8.13) as those for Green functions. Eliminating :
auxialiary vertices we have

(11.2) -

GoasNanas = —2u(0,), (11.3)

where g, 4 is the coupling constant of the field O, with fundamental fields. The relationship
(11.3) is the consequence of the propagator equation which may be represented similar to (9.14) -
in the form :

(Ao )u = Ao TES 5 ' @ % | (114)

~———

From the equation (11.2) it follows that the fields O, determine the operator product expansion
of the states @ (x,)ys(x;)|0). Indeed, substitute the Green function G, as the expansion

(11.5)

(11.6)
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Each field O, corresponds to a pole of the amplitude (11.6). Taking account of (9.12) and (11.3)
one can rewrite (11.5) in the form*

A, a5 TES (11.7)

6=0y _.-"

Assume now that the quantity (11.6) has no other singularities but poles at the points o = o,.
Then the contribution of these poles into the singularity of the Green function can be obtained as
follows. Represent the function C°# in the form (see section 3)

T

add, .
CPex1%2) = G =

5 I:Qadé(X|x1x2) - de’Ad(x — x')Qiaé(x|x1x2):I (11.5a)

and make use of the symmetry of the integration contour over ! under substitution ! > D — L
We obtain [3]

G = Gnmth— 149

The strength of singularity of the function Qf at x, = x, is decreased when [ increases. Hence,
shifting the integration contour over [ to the right we obtain contributions of the poles [, to the
singularity structure of the Green function G, and strengths of these singularities decreases with
I, increasing. The contribution of each field O, can be written down in an operator form

4(x1)xs(x,) = Zga, z

2o Gl — h 1 5) jdei“dé(x|x1x2)Oa¢(x). (11.8)

Note that this is not the operator expansion, since in the Euclidean space the contour of integration
over [ cannot be closed. Equation (11.8) holds in the limit x; — x, only.

11.2. Poles of the functions p,

Represent the Green function G, in the form of the expansion (10.4) and use expression (9.18)
for pg (o ...0,). Here we want to elucidate analytical properties of the functions gy (o, ... dy)
entering into the general solution (9.18). Below it will be shown that none of these functions has
poles for even k. For odd k each function py(c, ...0,) has poles only with respect to the (k — 1)/2 + 1)th
argument. This property will be illustrated by the simplest examples of lower order Green functions

* An analogous relation is valid if the dimension of the fundamental field d < h. In this case an essential role in the derivation
of eq. (11.7) is played by a one-particle itreducible graph. As has been shown by Mack [3], this graph is responsible for the diminishing
of the contribution from the shadow pole at the point d' = D — d and for the appearance in its place of the first term in the right-hand
side of eq. (11.7) which corresponds to the fundamental field.



294 E.S. Fradkin and M.Y a. Palchik, Development in conformal invariant quantum field theory

which depend on the functions p,, p, and p;. Generalization to the case of other p, functions will
be evident. '

First of all it should be noted, that the above fields are related to the poles of functions p,(c).
From the equation (11.2) at n = 1 and (11.3) we have

— gg,d& wu(d)
res py(o) = .
S PO = e

Consider now the Green function

e =Y pe,(6102) W (11.8)

Pg,(010;) = gA—251(0'1)ﬁ1(0'2)ﬁz(0'10'2)- (11.9)

Poles of the function pg,(s,0,) determine fields entering into the operator product expansion of
states @, x5 |0). These poles have already been taken into account in P1(o). Hence, the function
p2(0,0,) has no poles. However, it has influence on the partial wave expansion of a Green function
including any field O, . From (11.2) we have

where

Q,. )

=2 Pg.1(0) (11.10)
where

PGo.(0) = gAT2 A, 45P1(0)P(0,0)- (11.11)

The expansion (11.10) has contributions of the poles corresponding only to those fields 0,, which
enter into the expansion of the states ¢,x;|0> and O,_y;|0). Some of the poles of the function
P1(0) can be cancelled by zeroes of the function p,(c7,). Fields responsible for these poles do not
contribute to (11.10). These fields enter into the operator product expansion of states ¢,y |03,
but do not contribute to the states O,_y; [0>.

Consider the Green function G. Its partial wave expansion may be written in the form

(11.12)

= . P6,(010203) . -, (11.13)

where

P6:(610203) = gA™>P1(01)P1(63)P1(03)P2(616,)P2(6,03)P3(0,0,05).
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It is evident that the function ps(6,06,05) has poles neither with respect to the argument ¢, nor
with respect to 5. It can have poles only with respect to the argument o,. These poles contribute
to expansion (11.12). Responsible for them are those fields entering into the operator product
expansion of states @ x5, |0). Designate these fields as P,_. Such fields do certainly exist in theories
with internal symmetry.

It is evident that the fields P, (x) also appear in the operator product expansion of the states
0,.(x1)15(x2) [0). Indeed, from (11.2) we have

Oﬂ

(11.14)

where

P6.,(0) = gA~ 3Aa;daAa,,daﬁ1(U )P 2(0.0)P2(005)P3(0,00).

From this it follows that expansion (11.14) is contributed by both the poles of the function p,(s)
and those of p;(c,00,) with respect to the argument o.

11.3. The universality of the conformal invariant theory

Thus we have an infinite set of the fields

Pa(x), 25(x);, O (X), Pg (X), . .. (11.15)

where the fields O, are responsible for the poles of p,(0), the fields P,_ correspond to the poles of
p;(c,0,03) with respect to the argument o,, etc. The fields O, , P,, may be considered as com-
posite, since they are the product of two and more fundamental fields taken at one space-time point.
Note that the internal lines in the equations (8.3-7) and (11.2) stand for the propagators which
correspond to the fundamental fields ¢, and y;. This distinguishes them from other fields of the
infinite set (11.15). Let it be shown now that in the conformally-invariant theory the equations (11.2)
may be completed by other equations where the internal lines stand for the propagators of com-
posite fields. As a result we obtain a complete system of equations of type (11.2) into which all fields
enter on equal grounds, and fundamental fields have no privileges over the others. This property of
the conformal-invariant theory is-closely connected with the orthogonality relation (2.6) which
is valid for any conformal fields.

Consider first the Green function (11.10). Let O,, be the field responsible for one of the poles
of the function pg,_,(¢). This field enters into the operator product expansions of both states
941 |0 and O, _x;|0>. Hence an equation for this field can be written in two forms:

0., = A0 s (11.16)
a=ap ————
0,. :

Oﬂ

0 -
T8 —
e - Aaﬂ Tad o'r=e§ﬂ

(11.17)
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For the compatibility of these equations it is necessary to meet the conditions
Aggasogas = Nopo.t9opous: (11.18)

It can be obtained after the substitution of the expansion (11.10) to (11.16) and (11.17) and elimina-
tion of the value res,_,, pg,_,(¢). The condition (11.18) implies that the value A,,, sG0,0.0 15
independent of the quantum numbers o, and J, since the internal lines in (11.17) may correspond
to any fields from the set (11.15). It can readily be seen that (11.18) is always fulfilled. This follows
from the equation for the field O,, propagator which may be written either in the form (11.4) or
similar to (11.17) in the form

Oﬂ

It is natural to assume that for higher Green functions equations analogous to (11.17) and-
(11.19) exist

5 Tes (11.20)

g=0g

In contrast to (11.17) these equations are not identically fulfilled for n > 2. They lead to additional
relationships between the functions p; for k > 2. It may be shown, e.g., that

ﬁ3(aaaﬁ0'y) = 19 ﬁ4(0’a0'10'0'a) = [[_)3(0'10'a0')]_1, etc.

Equations analogous to (11.20) may be written for the Green functions which comprise only the
composite fields O, , P,_ etc.

Thus we have an infinite system of equations for the set of the fields (11.15). This system structure
is such that none of the fields (11.15) (including the fundamental fields @4, X,) is in any way privileged
over the others. In its derivation we proceed from quite definite Lagrangian (8.1). It is clear, however,
that if some other Lagrangian which includes some pair of tensor fields (one of them should be
charged) from the set (11.15) is chosen as the initial one, one would obtain the same system of
equations once again.

12. Calculation of coupling constants of tensor fields with current

Proceeding from the above equations for the Green functions, we may continue now the
analysis of special solution of the Ward identities found in section 7. We will use specially-chosen
current-containing Green functions in the form (7.2) and (7.3). In this case the operator product
expansion of the states @zx5|0D,j,@.|0) includes (see section 7) tensor fields 0%x) described in
section 6. In what follows the coupling constants of these fields with current and fundamental
fields will be found.



E.S. Fradkin and M.Y a. Palchik, Development in conformal invariant quantum field theory 297

Consider the Green function (7.2). According to (11.16) and (11.17) the following equations

; Ju J

Od / 13

= A, TeS W (12.1)
Pa T Ty
.8 d

0: - g /"’6

'\/v\v@\ = Ao, T€S W\-@\ (12.2)
d, } G d,

hold, where G is the Green function (6.9), o, are quantum numbers (6.8) and
Gy(x1x3x3) = <0| TOg(xl)(Pfl(xz)Xa(xs) |0> = gs(dd15)cd'dla(x1x2x3)- (12.3)

Note that in the equation (12.2) the internal line is associated with the current propagator. There
is a similar equation for the Green function (7.3)

o I d Ju
'\’/\NG:K = Ao es E\/\.N@E.X . (12.4)
Py * o, Dy '

Substitute expression (7.5) into (12.1). Calculating the residue, we find
Gi(x1x2x3) = g;(d)zslz {(%xga)—H lgﬁz[(%xfz)‘“ 1('1::1 ... us(x2x3) - traces)] } (%xfs)h ~174(12.5)

where g(d) is the coupling constant. Another coupling constant f,(d) entering into the general
expression (6.9) for these Green functions equals to zero

f@=0. (12.5a)

This is due to the special choice of the Green function (6.13) in the form (7.2). It is interesting
that in (12.5) there are no contact terms which are present in the general expression (6.9).

Let the coupling constants gi(d) and g(d,dd) be found. In principle they may be obtained from
the equations (12.2) and (12.4). In practical calculations, however, it should be taken into account
that in contrast to (2.8) the constant g%(d) is determined by the relation (6.9) and the normalization
factor of the function C°°# is singular at o = g, see (6.24, 24a). Hence it is appropriate to use
instead of the equations (12.2) and (12.4) the equations of type (11.6), which do not comprise
explicitly normalization factors of the functions C°?#, In more details these calculations are
given in our work [8]. The result is

I*h+s—1)

T =1 A4 (12.6)

[53d)]* = g3(d)

—d, + dd,5))?
(00 = ghad N S N 2 a) (12.7)
2 [@d+2-Dd+s—D(Th—dID-—d—s—1)
AD =551 @ {F(h —d—9TD—d-— 1)}‘ (128)
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The field 0%(x) with s = 0 coincides with the field ¢,(x). According to (12.6-8) at s = 0 we have
Afd)|s=0 = 1 and g5(d)|s=0 = gAd), 9(dd0)|s= 0 = Gaa,s SO that equations (12.1,2) and (12.4) for
s = 0 are fulfilled identically. Note that this is the consequence of the Ward identities, which
unambiguously determine a scalar contribution to the partial wave expansion of the Green
functions G, and G,,,. '

As it follows from the expression (12.6), the constant gi(d) is real if A(d) > 0. The quantity
A(d) is an oscillating function in the interval h — 1 <d < D — 2 and is strictly positive at
d > D — 2. As shown in section 7, the latter inequality may be obtained from the requirement of
positivity. Thus the reality of the constant gj(d) has been ensured.

In conclusion note that the expressions obtained for the coupling constants gj(d) and g,(dd, ),
as well as the condition (12.5a) take place only for the proper choice of the four-point Green
functions (7.2, 3). In a general case if arbitrary transverse parts are added to (7.2, 3), it is evident
that the coupling constants gj and g, change. In particular, it is possible to choose a transverse
part so that the total coupling constant §{d) = gi(d) + f{(d), entering into (6.9), would be zero.
Then Wightman function (6.10) will also be equal to zero and the fields O¢ are absent in this theory.
Thus the existence of the fields O¢ cannot be granted without further analysis of the dynamics.*
It is essential, however, that if these fields do exist in the theory, the dependence of the coupling
constant gddd) on the dimensions d, and § is universal, since the addition of arbitrary transverse
parts to (7.2, 3) changes only the value A(d). This dependence is given by the expression in braces
in (12.7). Note that in two-dimensional space, where the transverse part of the Green function is
fixed, the fields O¢ do exist.

13. Differential equations for Gl:een functions

As it was already noted the values of dimensions and coupling constants of the O,_-fields and
the basic fields ¢ and y cannot be found dealing with the integral equations of section 8 alone.
For determining them it is necessary to find a way to close the equations. At the present time this
problem has not been solved yet. In the present section and the next one we discuss a possible
version of solving it basing upon a fuller exploitation of the equations of motion for the bare fields

Oe(x) = 2: @(x)x(x):, = Ox(x) = 1: " (X)e(x):. (13.1)

It was already emphasized in the previous sections that some part of information contained in
the bare Lagrangian is lost when neglecting the bare term z,y in the equations (8.3)—(8.7) and the
term z,[] in the equations for the Green functions. It proves that the equations of motion can be
written in such a form-as to effectively include the limitations on the solutions of the integral
equations coming from these small corrections (for more detailed discussion see section 16) that
were omitted from the integral equations. To this end we carry out the renormalizations (see also
ref. [66]) directly in the equations (13.1)
Pr(x) = z; "0(x),  xp(x) =z3'2x(x),  Ap =z1'z23%

For the renormalized fields we have (with account of mass counterterms)
Oeg(x) = Ak{zqz(pk(x)XR(x)} - 5m(2)fPR(x); Oxer(x) = /IR{ZN’; (x)(PR(x)} - 6“3XR(X)

* See also the footnote before eq. (7.9) and the end of section 16.4.
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where z, = z,z; ', z, = zyz3 *. With the designation
2

PRIR) = {2, @0} — g ) (132)
[— R

and the analogous designation @y (x)@g(x) one writes the equations in the form
L |

Oeg(x) = Ar@r(0)xr(x), (13.3)
L

Oxr(X) = Ar@g (X)@g(X)- (13.4)
[

The subscript R will be hereafter omitted.

To make the equations (13.3, 4) meaningful one must point out a way to define their right-hand
sides, i.e. to define products of renormalized fields at coinciding points. It will be shown below
that this may be done in an explicit form if one uses the solution of the integral equations (see
section 8) obtained in sections 9-11. We shall demonstrate further, with the use of the Thirring
model as an example, how the equations (13.3, 4) can be exploited for building the unique confor-
mally invariant theory.

13.1. Product of renormalized fields in coinciding points

The right-hand side of the equations (13.3) and (13.4) contains the 0 x oco-uncertainty. Indeed,
let us write (13.2) in the form of the limit

Pa(x)1x) = lim z,(&){@u(x)1slx + &) — ...}, (13.5)
L1 &

where the dots stand for subtractions. The operator product @u(x)xs(x + ¢) is singular as ¢ — 0
while the constant z,(¢) tends to zero. The task is to determine the constant z,{¢) and the explicit
form of all necessary subtractions.

It is therefore natural to exploit the solutions of integral equations (8.3-8.7) for finding the
limit (13.5). They contain the whole information necessary for the limiting procedure (13.5).
Indeed, consider the equations (8.3), (8.4) and (8.6). Before passing to the limit z; = 0 one has [60]

where the dot designates the bare vertex y. The equations for higher vertices have an analogous
form. The 0 x oo-uncertainty in the second term of eq. (13.6) is effectively resolved due to the
introduction of auxiliary vertices R/ defined by the equations (8.5), (8.7). The solving of these
equations (see section 9) results in a simple way of resolving the uncertainty directly for the
Green functions (see egs. (9.11), (10.2) and (11.2)). The role of the bare term z,y is played by the
right-hand side of (9.13). It tends to zero as | — d, while the quantity (11.6) has a pole in this point.
According to the equations (9.11) we must obtain the field ,(x) again as a result of such resolving.
Symbolically one may write @ (x) = {20, (x)x5(x)}. Our task now is to represent this result in
the limiting form (13.5). Note, that owing to the conformal invariance one may represent in this
form not only the field g (x) but also its derivatives of any order.

For fulfilling this task it is convenient to represent the solution of equations (10.2) and (11.2)
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in the form (11.7a). Assume that the dimension of the basic field ¢,(x) is less than that of any of the
charged composite fields. Then as x,, — O the first term of (11.8) is the most singular one. Con-
sequently we have ‘

n
sin no(d —

¢d(x1)Xa(x2)|xu—»o =4 ht S)deQdda(x1x2|x)¢d(x)- (13.7)

Let us expand the function Q%¥(x, x,|x) in powers of x, ,. To this end the relation

v o 1 ZZ k

may be used. Within the leading order in x,, one has Q%(x,x,|x) ~ (x},)7%?8(x, — x). By
substituting this relation into (13.7) and going to the limit x,, — 0 we find

2u) = lim 2O tsx + ) (139
where
900 = g7 N0 1 D () (1310

In a similar way any field O, may be represented in the form
0q,(x) = lim zZQEN @ x)rslx + &) — ...}

where z{%%e) ~ (4¢?)“ =*92 and the dots designate the subtractions of the contributions of
all fields (and their derivatives) whose dimensions are less than /,. Any derivative of the fields
¢, and O, may also be represented in analogous form. It is essential that (13.7) determines not only
the renormalization constant but also the explicit form of all necessary subtractions in (13.5).

Consider, for example, the contribution of the first and the second derivatives of the field ¢(x)
into (13.7). With the use of (13.8) one finds:

. s l—d+6
T R
(l—d+d)(l—d+6+2) (I—d+dé)l1+d—0)
1 x173%1 __ 1 2 —
+ 8 l(l+ 1) (xIZ)u(xIZ)vau av 16 l(l+ 1)(l_h+1) leDx1+ e 5(x1 X),
where
_ sinn(l — h) I'th-10)
Al = — Y N(ldé) T

The substitution of this expression into (13.7) leads to

)
X)X + &) = A(%s—zl)m {%(x) — %3 £,0,04X)

(2d — 9)0

L 0(0
©+2) £,6,0,0,04x) — 16d(d+1)(d—h+1)

8a‘z(d+1)'”"

£D¢Jﬂ}+.” (13.11)
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where
A = gN(ddé)I'(h — d)/T'(d). (13.11a)
It follows that [J¢,(x) may be represented as the limit

did —h+ DD o J a0,

— -1
Dodx) =44 56— D+ 2

B
x {%(x)x.s(x +¢) — (%sz%[w(x) - z—deﬁucpa(x)]}, (13.12)

where {dQ, stands for the averaging over directions of the vector &,. The comparison with (13.3)
yields

. A oA 1
o) = i zs,,“(s)Jdns[cp.,(x)xa(x +0) = g @d) + 5 Wsﬂﬁu%(x)], (13.13)

where
zg) ~ (Ae2)?2 1 (13.14)

and the constant A is given by eq. (13.11a). The relation § dQ.¢,6,/e* = 8,,/D was used in deriving
(13.12) and (13.13).
In an analogous manner one can find the operator product @7 (x)@4x). The result is
L | '

. . . 2 B Be,
04 ()94 = lim 2,00 fdne {«pd (Iulx + ©) — ooz [8— to— >4 a,,x,,(x)]} (1315)

where
z,(e) ~ Ge?)y 27 (13.16)
Relations (13.13)—(13.16) solve the task formulated above.

13.2. Equations for renormalized Green functions

Note, however, that the derivation of the relation (13.12) cannot be referred to as that of the
equation (13.3). Indeed, let us assume that, apart from ¢,(x), some fields O, and O, whose dimen-
sions are d, = d + 1 and d, = d + 2, respectively, enter into the right-hand side of the equation
(11.7a). In this case equation (13.9) remains unaffected since the contribution of the field @4 (x) is
still most singular. However, the contribution of the derivatives of the field @4x) cannot now be
distinguished from that of the fields O, and O,, since they are of equal singularity. In particular
one has instead of (13.12)

O@dx) + (8,0,(x) + 05(x)) = A@a(x)xs(x)- (13.17)
L1
By comparing (13.17) with the equations of motion we conclude that any Green functions con-

taining the field (0,0,(x) + O,(x)) must vanish. This condition leads to additional equations that
determine the Green functions of the fields ¢ and y.
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To make this programme sufficiently meaningful it is necessary to justify the existence of the
fields O, and O, in the theory. This problem is far from being simple and is yet awaiting its solution.
Here we confine ourselves to an example in two-dimensional space, where the existence of such
fields follows from the conservation laws of the current and we succeed in carrying out the above
programme completely, see the next section. Namely, we show that the solution of the Thirring
model is totally determined by the requirement that these additional fields should not contribute
into the equations of motion.

Let us now discuss the general restrictions on the asymptotic behavior of the Green function
that follow from the equation of motion. To this end it is convenient to exploit the representation
of the Green functions that was described in section 2. In particular, one has

1(x1_x2x3x4') = <0| T¢d(x1)(P;(xz)X.s(xs)Xa(x4) |0>

(Gx32)” d”[( X 3)(%x§3)(%xf4)(%x§4)] TU2F(E, s (13.18)

where £ and # are the variables (2.11) and F(, ) is an arbitrary function. Since G(x,x,x3X,) is
_ Symmetric in the arguments x; and x, one has

F(,n) = F(n, &).
The leading contribution to the asymptotic behaviour of G,, as x;, — 0 comes from the field
@4(x). It follows from equation (13.9) that
lin& (3%)72G(x,x,%3%, + &) = AG(x;X,X3). (13.19)

The substitution of (13.18) into it gives
I'th —d)
Id -

One finds analogously the leading contribution to the asymptotic behaviour in the other channel,
when x,, — 0. The equation, which is the analog of (13.9), leads to

ﬁ?}»xl (Bx12)" 792G (x1x,%3x,) ~ <0I Ty s(x)xs(X3)xs(x4) |0>
whence it follows that

FEM|spso ~ 792 (13.21)

More detailed information about the asymptotic behavior can be obtained from the differential
equations (13.3) and (13.4) which are complemented by the equations (13.13)~(13.16). Note first
of all, that equation (13.3) for the propagator holds identically (to be more precise, it determines
the coefficient of proportionality in (13.14)). One has

OG(x1x3) = AG(x;x,x,). (13.22)
L1

F(1, 00) = F(c0, 1) = g>N*(dds)/n)" (13.20)

The quantity
Glx;x,x,) = <0| Tox)xs(x1)pax2) |0>
| L

in the right-hand side is defined according to (13.13). It may be easily verified, that the following
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relation holds

1
G(x1X3%x,) ~ —5—377 Galx
( 142 1) (xfz)d+1 d( 12)
and that it turns the equation of motion (13.22) into an identity when being substituted into it.

Consider now the equation for the Green function

0., G(x1X2%3) = AG4(x;x5X3X,) (13.23)
L |

where

Gy(x1x2X3x,) = <0| T(Pd(x1)Xa(x1)‘P;(xz)Xa(xs) |0>
I— L1

The calculation of the right-hand side of (13.23) with the help of (13.13) leads to
G(x;x;x3%,) = hm J.dQs(xﬁ)a/z_l {Gl(x1x4x2x3)
X4 X1

Ad (x14)u

—A G(x1x,%X3) + — ——aﬁlG(x1x2x3)}. (13.24)

B 2 G,

For further calculations it is useful to substitute the representation (13.18) into (13.24) and take
the condition (13.20) into account. Let us expand F(£, ) in the vicinity of the point { = 1,7 = o
into a series in powers of x,, up to the second order terms. This expansion is possible due to the
fact that F(1, oo) # 0, see (13.20). This expansion contains three unknown constants 0F/0¢ le= 1= c0s
PF/OEOE|e= 1 y= s and OF/8(1/n)|s=1 4= By substituting the expansion thus obtained into
(13.23) and (13.22) we find three equations for these constants. In this way the next three terms in
the asymptotic expansion of the function G;(x,X,X3X4) at x;4 — 0 will be found. We do not present
the corresponding results here, since they will not be needed in what follows. We only point out
the connection of these results with the above described programme of closing the equations.
Indeed, the fields 8,0, and O, give the same (in what concerns the strength of singularity) contribu-
tion into the asymptotic behavior of the function G;(x;x,x3x,) as the fields [J¢,(x) and 0,0,04x).
On the other hand the total contribution is fixed by the equations for higher Green functions,
analogous to (13.22), while the contributions of the derivatives of the field ¢ (x) is known. Thus
the contribution of the field 3,0, + O, becomes known, too. We show in the next section that
in the Thirring model this is sufficient for closing the equations.

We conclude this section by noting that the statement made in section 11 about the universality
of the interaction at small distances concerns only to the leading contributions in the asymptotic
behavior of the Green functions. As it is seen from the above analysis if one keeps less singular
contributions the basic fields ¢, and y; prove to be singled out as compared with the composite ones.
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14. Thirring model

In this section all the results of sections 5-13 will be demonstrated on the example of (exactly
solved) Thirring model, describing four-fermion interaction in two-dimensional space. It is con-
venient to write the Lagrangian of this model as a three-linear interaction Ay Wi, introducing
conserved current j, = yy, . Note, that due to the current conservation the renormalization
constants of the vertex (z,) and spinor field (z,) are equal: z, = z,, and the constant z5 is finite, .
This means that the definition of the operator product (see section 13) &w(x) comprises only

onc subtraction (mass counterterm), and the multiplicative renormalization is absent
(zy = z;z3 ' = 1). Note also, that the dimension dependence on the coupling constant, see (14.8),
can be calculated using the general methods of section 16. Evaluating the constants z, and z,
and assuming z, = z,, one obtains the known [68-70] dependence of the dimension on the
coupling constant (and charges a and @). Here, however, we use another method of calculation
based on the results of the previous section.

14.1. Preliminary remarks

The equation of motion is

—O(x) = Ap,j, M(x) (14.1)

where y is a spinor field and j, is a conserved current. In the two-dimensional space it satisfies
two conservation laws (see section 7): é,j, = 0 and ¢,,0,j, = 0. Hereafter we shall consider the
fields and the Green functions in the Euclidean space. We adopt the following relations for the
y-matrices

Valv + BV =204, V=, (142)
’yg = —19 '}"; = Vs> Yu¥s = _guvyv (143) !
where ¢,, = —e,,, &9, = — 1. The idea of the present approach is as follows. We shall show that

the conservation laws imply that the expansion of the operator product Ju(x ¥ f(x,) should include
a spinor field ¥, of the dimension d, = d + 1. This field is analogous to the fields 0? considered
in section 6. The Ward identity for the Green functions of this field contains the Schwinger terms,
the same as eq. (6.10) did. According to the previous section, this field, along with the derivative
d,¥, contributes into the operator product JuW x), cf. (13.27). Further on, we shall demand,

L J .
in accord with (14.1), that the product YuJu(X)¥(x) should include only the field 0y, and not y,(x),
(L

and show that this demand uniquely determines all the Green functions and also the dependence
of the dimension d upon the coupling constant A. For example we shall consider the two Green
functions

Guv(x1x2|x3x4) = <0| T‘/’d(xl)‘//;(xz)ju(xs)jv(x4) |0>, (14.4)
Gi(x1x3x3%x4) = <0| T'//d(xl)lll;(xz)‘/ld(x3)¢d+(x4) |0> . (14.5)

Before starting this programme we list now some known [68-70] results concerning the solution
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of this model for the sake of comparison. Consider the lowest Green functions -

Gyx;x;) = <0| T‘//d(x1)l/f;(x2) |0>» (14.6)

Gju(x1x2x3) = <0| Tlﬁd(%)\/’;(xz)ju(xs) |0> 14.7)
The equation of motion is

—8G(x,x,) = Ay, <O| Tj(x W alx:1 g (x2) |0 (14.8)

The Green function G; (x;x,X;) can be uniquely found from the two Ward identities

aﬁstu(xszs) = —a[5(x13) - 5(x23)]Gd(x12)

. _ 149
B G (xy %%5) = A[00xy3) — 30625)]75Gx12) (143)
whence it follows that 2
G; (x1x3%3) = [ac’i"3 + Tys€,.07°] ln— Gy(x,2) (14.10)
13
a—af(xs), (x13)
quju(x1x2x3) = o [ ngz xllssu]YuGa(xu) (14.11)

Note now that the equations of motion contain the quantity (14.11) at x,; = 0. If we formally
put x,3 = 0 in it, however, we obtain infinity. It is therefore necessary to find such a way for making
the arguments coincide which would prevent the appearance of the infinity. In the original work by
Johnson [68] the symmetrization of (14.10) with respect to x,; prior to the limiting transition

Pud W) = 3 1m {j(x + elyb(x) + 7P (x)ju(x — &)} (14.12)

was used. With this definition of the operator product the second term in (14.11) vanishes and
we are lead to the closed equation for the propagator

—0,,6(x15) = M=) Xa1Gix, ). (14.13)

2 (x1y)
We must emphasize that the definition (14.12) is a postulate complementary to the equation of

motion. The derivation of closed equation for the Green function (14.5) may be performed by
analogy with that of (14.13). It has the form

2 A 2 A ,.
—0G(x,X2X3X4) = e {a[0,,Inx}, — &, Inx?3 + 0, Inx7,]

— ay,£,, 05 [v3 Inx}, + y$In x2; + 9% 1n x14]} G(x,x,X3X4). (14.14)

The Green function

Gj“(x1x2x3x4|x5) = <0| Ty ax Wi (XWX W (x4)ju(xs) |0>, (14.15)
which is necessary for deriving (14.14) is uniquely determined by the two Ward identities
0.°G; (x1x2x3x4|x5) = —a[d(x,5) — 8(x,s) + (x35) — 3(x45)]G(x1X2%3%4) (14.16)

uvOp GJv(x1x2x3x4|x5) = a[y50(xys) + YPO(Xas) + y520(x35) + YE0(x45)]G(x1 X5X3X4).
(14.17)
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Within our approach the definition of the operator product is a consequence of the solution of the
integral equations. One easily sees that the equations (14.13) and (14.14) are obtained within our
approach from the general relations of the previous section. In the 2-dimensional case it may be
shown that there is no multiplicative renormalization of the operator product ju(l_x)lllld(x) and the

resolving of the 0 x co ambiguity is reduced to one subtraction that removes the leading sin-
gularity &,/¢%. By using this definition for Ju(XW 4x) we also obtain the equations of motion for the

Green function in the form (14.13) and (14.14). Equation (14.13) results in the known [68-70]
relationship between the dimension and the coupling constant

d=1%+ (A/4n)(a — @) ‘ (14.18)
and equation (14.14) enables one to calculate unambiguously the Green function (14.5).

Let us present explicit expressions for the propagator (14.6) and the Green function (14.7)

e
6= 32 T~ 5 o

G x) = G314x). (14.20)

We present also the expression for the propagator of the current. There are two conformally
invariant propagators:

(14.19)

A, (x) = 0 0, In x2, (14.21)
and the transversal one

‘”(x) I S 0,0, In x2 0,,0(x) — 6 0, In x2. (14.22)

Their sum is the unit operator
A (%) + A (x) = 6,,6(x).
It can be easily seen that each of these propagators acts as a projective operator. Let J{x) be an

arbltrary functlon Present it in the form f(x) = f; (x) + f; (x), where J1,4x) = 0, f1(x),
f2.(x) = v0y f2(x). Then we have

'[dyAuv(x = Nf1.0) = f1,4), jdyz,w(x = N2 y) = f2,/x). (14.23)

This property of the propagator of the current significantly simplifies the amputation of the
current line: the amputated 3-point function coincides with the primary one.

14.2. The Green function G, (x,x;|x3x,)

Consider the Green function (14.4). It contains two conserved currents and, consequently,
the Ward identities for it should, generally, include the Schwinger terms coming from the com-
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mutation of the currents. We have

aﬁaGuv(x1x2|x3x4) = —a[5(x14) - 5(x24)]ij(x1x2x3)
+ {A,8,8(0x5 — Xg) + A758,,0,0(x3 — x4)} Galxy ), (14.24)
8upa:4Gpv(x1x2!x3x4) = Ey5[5(x14) - 5(x24)]ij(x1x2x3)

— Ay50,0(x3 — x4)G(X15) — A30.:,,0(x32)G X1 2) (14.25)

The solution of these identities is
Guv(x1x2|x3x4) = Gfg)(xlx2|x3x4) + Gil,l\’)(xlx2ix3x4)7 (14.26)
where

1 x2 x3
Gfg)(xlx2|x3x4) = (47)2 [ad}® + @yse,.0;°] In xifz [ad}* + @yse,.0:] ln}% Gix12), (1427)

14
Gfllv)(x1 X5 lx3x4) = A4A, (x34)Gy(x1,) + Al A (X34)75Gd(X12) + &0Aua(x34)75GulXy 2)]
+ AZSuaSVTAar(x34)Gd(x1 2)" (1428)

The Schwinger terms are due to the function G{. Thus, the Green function G,,(x;X;|x3X,) is
determined by conformal invariance and conservation laws up to the three constants: 4,, 4,
and A. These constants must be found from dynamics.

14.3. Partial wave expansion of G,

Consider the partial wave expansion of the Green function G,,. To this end it is necessary to
find normalized 3-point functions. We confine ourselves to the calculation of the spinor contribu-
tion to the partial wave expansion. Denote the 3-point function of two spinors (x,, /) and (x,, d)
and a conserved current (x50 as C'"i(x,x,%5). There are four types of such functions

: X 1 1

C'%(x,x,%3) = Ny 12 { — — } (14.28)
’ G VG G

Clzdaj(x1x2x3) = Ni&uYs X1z 70V T3 ll—d 2 (1.2 ld—l 2 (14.29)
o g (%x%z)(Hd)/ Gx3) Y (X354

_ 1 X X

Clda,- X X,X2) = N X3 13 32 14.30
1l (X1X2%3) 2(%x111,2)(l+d)/2 " (%xf_q,)('_d)/z GxZ )@z ( )

_ X X (14.31)
Clda'j X{XnX — N £ 6x3 . 13 32
2,,;( 1X2X3) 2(_%x%2)(l+d)/2 vy 50y (%xfs)(l—d)/z (%x,;:s)(d—l)/z
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where £ = y,,x,,/\/x_2
1iJB-1-dl+d-1)T(+d-1))

' 4n 2 (I —d) (5 -1 —d)2) (1432)
1 1 I + 4)/2)
N, = ——— . 14.33
PUoAm Ji—d+1)d+1-pl@—1-4d)) (1439
It is easy to check, that these functions obey the amputation relations
dx,G; 1(x14)clld,?(x4x2x3) = C%,;l’d’a’(x1x2x3)
dx4cl1d,7¢j(x1x4x3)Gd_l(x4 —X;) = _lei;d’aj(x1x2x3)
dx4C12d,‘fj(x1x4x3)Gd_l(x4 —X,;) = _Clz’,zu_d’aj(x1x2x3)
- (14.34)
dx4G,_1(x14)C12‘{Zf(x4x2x3) = _C%,;l’d’aj(xlxzxs)
dx4Anv(x34)C’1"’?(x1x2x4) = le’ﬂ(xﬁzxs)
UP _
dx4Auv(x34)Cl1'i,6vj(x1x2x4) = C’f’,‘;"(xﬁzxs)

and the orthgonality properties

1l 51, A s o
: °'° A=A e‘a =3Gy(x1,)2nip Yo, — 1)

(14.35)
X1y X3la
E -
where
u(l) = i(l -6 -) (14.37)
2n 2 2 . -

Therefore there are two mutually orthogonal sets of functions. They may both participate in the
partial wave expansion. The following relation has been used in the calculations (in (14.34)(14.37)).

J o, 1o Ffo 1 TG-d)TG—d)TU=0) %y &, 1
FE)T GE0R E T T DTG HIT0) Gy @ s o G
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When deriving the fifth and the sixth relations of amputation (with respect to the current line)
eq. (14.26) has been used along with the fact that ¢; = ¢; in the two-dimensional space.

Consider the partial wave expansion of the function G)(x;x, |x3x,). Some simple calculations
give for the spinor contribution

w..,jv = 2P0 T (14.38)
o "

where
1+iw
1
; = — f dip(l)

27
1—io0
and the dots stand for the contribution of higher spins. Here the function C, is
CY¥oi = aCif5i(x,x,x3) + GCY5(x1%2%3) (14.39)
and the function p(J) is equal to

1 Td+3) TE-42) TB-I1-4d72)

D= e TE-d T@—1+dP) T +d+ D2)

(14.40)

With the use of the amplutation relation (14.34) the expansion (14.38) can be equivalently repre-
sented in the other form

. jv = — ;ﬁ(l) + ... (14.40a)
Ju '

where

C'ff;;(xleX;;) = '[dx“Gl(xl — Xg)CATM(x, X, x3) = aCy7(x1x,%x3) — aCyi(x;x,x3)

- ’«N\Gf (14.41)
[(_:lfaj(x1x2x3)]+ = ;G‘)W‘i = (aC, — aC,)* = aCPi(x,x,%3) + aCq7/(x,x,X3)

and the function p(l) is connected with p(l) by the relation
B =p2-D. (14.42)

Consider the partial wave expansion of the function G{})(xx,|x3x,). Since it is expressed in terms
of the product of the propagators A,, and G, one readily finds, with the aid of (14.34), the two
equivalent forms of the expansion
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BB OEO%n:
= P OSOGNL

S OLOERBON0
e PO OGN

14.4. Expansion of the operator product j,(x,)x,). Contribution of the field y,

g

To find out which fields contribute into the expansion of the operator product Ju(xX W 4(x,) one
needs to know the poles in the I-plane of the functions

which determine the expansion of G, and analogous poles in the expansions (14.43) and (14.44).
With the use of the egs. (14.28), (14.29) and (14.40), one makes sure that the expansion (14.38)
contains a pole in the point / = d. This pole corresponds to the basic field

d o ‘lld A jv
ag; d ju '//d

where G, is the Green function (14.10). The substitution of the explicit expressions for the quantities
mvolved here leads to the conclusion that this equation holds identically.

Consider now the second function out of (14.45). It has a pole at I = d + 1, coming from the
normalization factors (14.33). The spinor field y,, with the dimension

dy=d+1 (14.47)

may be associated with this pole. The residue in this pole gives the coupling constant between
this field and the basic field y, and the current. We have

d g; ll,d jv
a; d ju ‘//4
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where

Ju
szl)(x1x2x3) = <0| T‘/’1(x1)'//;(x2)ju(x3) |0> = YJV‘G/K . (14.49)

7

Now we show that the field y, is analogous to the fields O treated in section 6. Define the Green
function (14.49) by the relation

G (x,x,%3) = g5 z—l»idIEl N3 (1, d)CH¥i(x X2 x3) (14.50)

where ¢! is the coupling constant. By calculating the limit (14.50) we find

i 1
GLI)(x1x2x3) ES _%gg‘o)[aéu\’ — aﬁuvy5]av3{ax3 In xf3yp(x32)p} (lxz—)d"'lﬁ (1451)
2712

It can be easily verified that this Green function satisfies Ward identities, analogous to (6.10)

2 - xA
G M (xyx,%5) = — £g§°)a6x35(x1 — X3) Ty7 (14.52)
2 3X12)
5 ) .
auvang”(xlxzxg,) = - £g§°’ﬁvsax35(x1 — X3) —%- (14.53)

2 (3x3,
The coupling constant g{* is calculated with the help of equation (14.48). The substitution of
(14.51) and (14.30, 31) into it yields
4 Td+3)
O 12 = - 2 14.51

Thus, we have shown that if one uses G\ determined by (14.27) for the Green function G,, then,
in such a theory, the operator expansion of the product j(x,)W4x,) contains the field yr, with the
dimension d + 1 apart from the field \, and its derivative 0,(x). The general expression (14.26)
for G,,, however, contains the extra term G'%) that includes the unknown constants 4,, 4, and 4.
By choosing these constants in such a way that the ficld y; should not participate in the expansion
of the operator product 7,j,(x; W (x,) we just achieve the fulfillment of the equations of motion,
see subsection 14.6.

14.5. Derivation of closed equations for the Green functions

Now we formulate the general receipt for obtaining closed equations for all Green functions.
In accord with the programme presented above (see previous section and subsection 14.1) the
new dynamical principle is the requirement that the field s, should not appear in the expansion
of the operator product y,j(x,W(x;). This requirement may be stated in the following form.
Let G, be any Green function that includes n fields. Let us associate with it the Green function
G, that is obtained from G, by adding one current j,. Represent the function G as the expansion

BOES OO OO0 ST
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where

gj

C‘plfaj(x1xzx3) = ’I\J\J@ Cldd] lda’ = (5 - suvys)clld?a (14'55)
d
gy

Ciloi(xyx,%;) = ‘ld\f@ = C{7 + CZ7 = (B, + £4ys)CHY. (14.56)
d

The functions C and € form mutually orthogonal sets

ll 12 _0

and satisfy the conditions
%Cu = 20.Cy s 7.6, =0. (14.57)

Consider equation (14.54). The requirement that the first term of (14.54) be free of the pole in the
point d + 1 provides the fulfilment of the equations of motion (14.1) and may be written as

) .
tes. M —0, (14.58)

(14.59)

Indeed, with the condition (14.57), equation (14.58) makes the field i/, disappear from the expansion
of the operator product y,j,(x;)W4x,). Note, that the residue of the second term in (14.54) is
different from zero

and determines the contribution of the field ¥, into the expansion of the operator product
Juo5 )W ;) (and 10t Of 3,7,0x, W fx,)).

We rewrite now the equation (14.58) in a different form, which is more convenient for calcula-
tions. The normalizing factor of the function C, involved in (14.58) is singular at the point ] = d + 1,
see (14.33). Instead of C, let us consider the function

_ —— 1 - X X
Bu(x1x2x3) = N, l(ldo'j)cf;d ’(x1x2x3)=(5m, uv?S) (1 p) )(l+d)/2 (7,, {(%xfg,)l(?_dm (%x%;‘ﬁ_”/z}’
(14.60)

which is regular in this point. Now equation (14.58) may be written as

(14.61)
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This equation leads to closed equations for the Green functions G, since the function GP is
expressed in a unique way in term of G, with the aid of the Ward identities. We illustrate this
below for the functions G,(x;x,Xx3x,) and Gm,(xlx2|x3x4) taken as examples.

14.6. Equations for the Green functions Gl(x1x2x3x4) and G ,(x1%3|X3%4)

We now consider the Green function G,(x;X,x3X,) as defined by (14.5). It is convenient to
use the equation from which it must be determined in the form (14.61). We have

res AU 6.@ X3 — () (14.62)
1=d+1 L .
or
Tes jdxs dxg dxgBl97i(x, x5x5)Gq (X6 — X6)G;,(XeX2X3%4]|Xs) = 0 (14.63)

where B/ is the function (14.60). The x,-integration is performed with the help of relations
(14.34) to give

de%BLdaj(x1x%x5)G; 1(x’6 — Xg)

%16 1 1 } (14.64)
~ (0, — Eu¥s) - a5 - - .
O “YS)(%x%G)“ ari {(%x%s)‘““ D2 (Axge)2TimN2

After the substitution of (14.64) into (14.63), and integration by parts we find

X1i6 1 1
res dxs dxe¢ T 5 ~i—dv 22 T2 \AFi-22 (1.2 \C-I-d/2
I=d+1 j (Gx16) 2 (3x1s) 2 (3x36) » g

X (5uv - 8uvY5)5Z5Gj‘,(xexzxsxzt|xs) = 0.

B0

(14.16), (14.17). This gives us the possibility to perform the xs-integration, the remaining integrand
containing only the function G,(x;X;X3x4). '

To carry out the last integration over x, we take the res,_,., before the integration by using
the relation :

We substitute here the derivatives 6,G;, and ¢,,0,G;,, as expressed from the Ward identities

r B T 0. res L
es = ~ -
I=d+1 (%xfs)(l d+2)/2 X124 (xzié)u d+1)/2

~ éx15(3‘31 — Xg)-

After some simple calculations we find that equation (14.62) reduces to the form

a-3

—3G1(x1xZX3X4) = — {a[éx1 ln X%Z - éxl ln xfs + 53‘1 ln xf4]

a—a

—ﬁvusupﬁz‘[vé" Inx}, + y3*Inx{; +y5*In xi4]} G1(x1X2x3%,).  (14.65)
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If, further, one introduces
(a —a)

we obtain the known equation (14.14) and also the relation between the coupling constant A and the

dimension d. It may be shown, that eq. (14.65), when supplemented by the requirement of anti-

symmetricity with respect to the variables x;,x; and by the condition [G(x,...x,)]

= G(x4X3Xx,X;), uniquely determines the Green function G,(x,x,x5x,) and results in the well-

known expression for the latter.

Consider now the function G,,(x,x,|x3x,). For its calculation it is convenient to use the equa-
tions in the form (14.58). By the substitution of (14.26) into it and the use of (14.40a) and (14.44)

we get

-0 LI - - o X4
R OLOGEPOSOSPOROY:

From (14.48) and (14.51a) we find

A=4 (14.66)

ala —a) _ ala —a)

— = T —4, -4 - T4, - A
4n(d — % o dn(d — 3 77
or, after the use of relation (14.66) also
A—A, =a/l, A—-A,=a - (1467)

We have obtained only two equations for the three constants. It may be shown that the relations
(14.67) are sufficient for the equation of the one-current Green function, which connects it with
G, to be satisfied. In order to find a third equation for the constants 4,, 4, and A, one needs to
consider the Green function with three currents. This consideration can be carried out analogously.

Thus, equations (14.58) or (14.61) enable us to uniquely find all the Green functions of the fields.
When currents are involved these equations also determine the structure of the Schwinger terms
(i.e. one can find the coefficients 4,, A, and A4 in the Ward identities (14.24) and (14.25)), which
necessarily appear in the Thirring model.

15. Calculation of dimensions and critical indices

1. For the calculation of critical indices we shall use the simplest model
Lin = A9*(x) (15.1)

where ¢(x) is a field in the 3-dimensional Euclidean space. Let us suppose, that the theory described
by the interaction (15.1) is conformally invariant. To exploit this assumption effectively, it is useful
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to formulate the interaction (15.1) in terms of an intermediate field y(x) = ﬂ(pz(x). The new
Lagrangian is of the form:

Ly, = 34,02 (X)x(x). (15.2)
It can be shown, that theories with L,,, of the type (15.1) and (15.2) are completely equivalent if
A= —8L (15.3)

Let d be the dimension of the fundamental field ¢(x) = ¢,(x), and A the dimension of the “com-
posite” field x(x) = x,(x). These dimensions can be evaluated in the framework of the bootstrap
program [38-43]. We shall take the renormalized skeleton equations for vertices and propagators
as a starting point. In the present case these equations are of the form:

(15.6)

The solid and dashed lines describe the inverse propagators G; '(x) and Dz ! respectively, where

I'a 15.7
Gux12) = O] Toulxu)ouw) [0 = 7772 Dty (157

and D, being defined by an analogous expression. The meaning of the symbol x is:
Xy X2 = (Mz)ﬁf‘Gd_l(xu)-

The dot at the origin of a line means that this line is amputated. For Green’s functions in vertices
of the above equations the following conformally invariant expression will be used:

T¥8(x, xx3) = glacdy) "33 3x3) 74 = —g (15.8)
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where g is the coupling constant. Inserting (15.7) and (15.8) into (15.4)(15.6), we shall obtain three
algebraic equations for the determination of the coupling constant g and two dimensions d and
A:

1 = g% Vd, A) + g*fPd,A) + ..., i=123 (159
The functions %), entering these equations, will be explicitely evaluated below (point 3). It will
be shown, that eq. (15.9) possess the solution:

d =0510, A=134 _
These values of the dimensions correspond to the following values of critical indices n,v and a

(for D = 3)

n=2d4d+2—-D=002; v = !

D_a = 0.60. (15.10)

The latter result is in a good agreement with other theoretical calculations and experimental
data [1].

2. The evaluation of integrals entering the right-hand side of eqs. (15.4)(15.6) is a difficult
problem. Partially this problem was solved by Symanzik in ref. [40], where the integral with
power functions was evaluated, and by the authors in refs. [36], (see Appendix 7) where the exact
evaluation was carried out in terms of 3-vertex contributions arising in equations for Green’s
functions with the current and energy-momentum tensor (the latter equations are equivalent to
eqgs. (15.5) and (15.6)). However the integrals arising in the vertex equation (15.4) have not been
evaluated, and this was the main obstacle for realization of the bootstrap program described above.
A method of approximate evaluation of indicated integrals will be developed below. This method
gives the possibility to evaluate integrals in egs. (15.4)(15.6) with the sufficient accuracy in that
range of dimensions which is of practlca] interest.

We shall illustrate the method in the case of a simpler model (more detailed calculations for
this model have been published in ref. [36a]):

Ly ~ A93, (15.11)

where ¢ = @,4(x) is a field in D-dimensional Euclidean space, and then briefly discuss calculations
connected with eqs. (15.4)«(15.6). The integral equations for the vertex and the propagator, cor-
responding to the interaction (15.11), can be obtained from equations (15.4) and (15.5) by means
of identification of solid and dashed lines. Correspondingly one must put d = A = § in (15.7)
and (15.8), where J is the dimension of the field ¢(x) in the case of the interaction (15.11). Egs.
(15.4) and (15.5) at d = A = J give two algebraic equations:

gfV0) + 470 =1:  FP6) + g*f570) = 1 (1512

where functions f{" and f{¥ are defined by relations:

:g " O
= s —( ). °. =mo—r )
| (15.13)
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There are analogous relations for f{3(5). We kept only two terms on the right-hand side of each
of equations (15.4) and (15.5). Consequently we are interested only in the solutions with a small
coupling constant. It must be emphasized that the latter does not mean that the dimension will
be close to its canonical value D — 1. The only restriction on the dimension is:

§>1iD — 1. | (15.14)

So, let the coupling constant be small. However, according to (15.12), it is the 3-vertex term which
must be close to unity in this case. Consequently the values of functions f{*(9) satisfying (15.12)
must be large. This means in its turn that one must look for a solution near the values of the
dimension &, for which the integrals (15.13) diverge. Therefore we shall be interested in the behaviour
of functions f{%(J) near their poles in d. ‘

Let us consider the 3-vertex term first of all. Three of six internal integrations can be easily
accomplished with the aid of relations of ref. [40]. One has:

J‘raaa(xlx4x6)Ga_ Yxg — xJTPP(x,x5%3)G5 (X — Xs5)
x T%%(xsx,%.)G; Hx, — x¢) dx, dx, dx_dx, dxs dxs
= I T35, x 46 )T, x s X 3)T2%%(x 5 %, X6) dox, dixs dix, (15.15)
where & denotes the amputation of a corresponding leg. Normalizing according to (15.5), (15.6),

we find:

(D — 8)/2T(2D — 39)/2)
I3(6/2)I'(36 — D)/2)

r*(D — 8)/2)
I'*(6/2)

Besides that, it is convenient to integrate both sides of (15.17) over x3:

3(D — é)/2)I — 34)/2
0t = g TR D I [ (1,13,

x (x36x26) TP T (xG5) TR0 (xG5) T3P TV dxg dxs doxy. (15.18)

(x35x54x34) 7072, (15.16)

FSSS(x4x5x3) =g

T¥93(xgx,%6) = 9 (xks) 0P (a2 ) OO (15.17)

The right-hand side of this equation possesses two types of poles in J: firstly there are poles in the
factor in front of the integral:

S5, = %D + 2n, 8,=D +2m (15.19)
where n and m are integers, and secondly there are poles at
8, = 1D + 3k, (15.20)

where k is a positive integer, which arise because of the singularity of power functions of the inte-
grand. Putting § = J, + 3¢ we find in these points:

h -k
1 __l_= (). (15.21)

(Y HEre| o e T(h+ k) Tk + 1)
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Note that the integral (15.18) can be evaluted at small &. Thus the function f{*(5) can be found in
the neighbourhood of any of the points (15.19) or (15.20).
The functions f;"(8) and f{3(6) can be calculated near the points (15.19) and (15.20) in an analo-

gous manner.
Let us find these functions in the neighbourhood of the point 2D. We put:

§=2D + Z. (15.22)

Using eq. (15.21) at k = 0 and the relation:
1 =P T3(D/6)

(x%2x%3x§l)_a/2 = - E F(D/2) FS(D/3) 5(x12)5(x13) (1523)

we find (at D = 6):
2

L= =371 - F + 0]} -7 5 (1524

L= = 541~ 4 + ) - 7* (152)
where

s ) 71:3/2 3

g =4 > /- P(x) = —ln I'(x).

These equations are correct when ¢ < 1. It can be easily seen, that in the 3-vertex approximétion
(i.e. when confining ourselves only to the leading terms on the right-hand side) there are no solu-
tions. However in the 5-vertex approximation there is a solution with small ¢:

7>~ —1.7 x 1073; e=7x 107%; 6=4+ 141072, (15.26)

Note that the couphng constant turned out purely imaginary. It can be shown with the aid of
another method, that g*> < 0 near any of the points (15.19) or (15. 20) when m, k # 6r,r being an

integer.

It follows already from the 3-vertex approximation that g ~ &3, and thus the true expansion
parameter is ¢ — the deviation of the dimension & from § = 4. For this reason we kept the next
order in ¢ in the 3-vertex term and only the leading order in the 5-vertex term.

3. Let us consider now the interaction (15.2). Clearly, the calculational technique, developed
above, is applicable in this theory.

Let us introduce the new variables for convenience of calculations

x=%A—-2d), y=3D-2d-A) (15.27)

and expand the integrands at the point x = y = 0. Confirming ourselves to the leading order in x
and y we obtain, after some cumbersome calculations that will be published elsewhere, the algebraic
equations (15.9) in the form:

1 , 2
= —y il 15.28
1 uoxy(x+y)+u0xy, ( )
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1 T -Gx—y) 1, T (15.29
1

& 3h © 3n°

1= _uo'

1
— gy 15.
1 =u, %, (15.30)
where u, = g?n®*T(h), e, =d —h+1=1—4D —3x+y,e,=h—-—A=y—x
For the derivation of the second and third equations we used the exact expressions for the
3-vertex terms [5, 36], see Appendix 7, and for the derivation of the first equation we used the
formulae

n” 1
(x2,) " ®* D (x2,x2.)" (D/HWH)IZ)!;‘:S =1"2(h)( o (x,,5) { (x53)
I'(h 1
- (x%s)_(h_x+y).xl_‘(x(—_)-y)7;h‘}.

These equations are true in any D-dimensional space-time. Putting here D = 4 — ¢ and expand-
ing in &, we obtain:

a—aera(t ee
l=—{— nall Bl B 1

e )]G —c)G +c) e) 3 —¢)G+cy)
_ () L, (w) e  (w) L

L= (8)1201+(8>201+( )6

_ (%) L

1—(8>262

where d = h — 1 + c,e> and A = h — c,&. The solution of these equations leads to the known
results [1] of the e-expansion:

¢, = 1/108, ¢, = 1/6.

Note, however, that the method, described here, essentially differs from the e-expansion since
it allows us to work directly in the 3-dimensional space.

Moreover, the use of the conformally-invariant vertices and propagators is equivalent to the
summation of all corrections to the bare vertexes and lines, which -appear in higher orders in e.
Solving the system (15.28-15.30) at D = 3, we obtain:

d = 0.510, A =134 (15.31)
The following values of the critical indices correspond to these values of dimensions:
n=2d—D+2=002 v = 0.60. (15.32)
E‘hese]results are in a good agreement with other theoretical calculations and experimental data
1, 67].

Note in conclusion that the set of equations (15.28)(15.30) is obtained as a result of a rather
rough approximation made while estimating the integrals involved in (15.4)~(15.6) (the expansion
parameters x and y are of order @f 1/4). One can essentially improve the accuracy of calculations
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within the same method. This leads, however, to a very complicated set of algebraic equations
whose solution requires computer calculations. The results of them will be published elsewhere.

Note, however, that it is not very difficult to evaluate the first correction to the 3-vertex diagram
in the leading order for the 5-vertex diagram in the equation for the “composite” field y(x). Cal-
culations with these corrections lead to the results: n = 0.004, v = 0.625.

16. Conclusion. Contribution of bare terms

Instead of listing the results reviewed in this paper and consequences of them we would like
here, in the concluding section, to discuss once again completely the contribution coming from
the terms z,y, z,[J and z;[] which is an essential problem for the approach considered in this
paper. This problem is partially considered in sections 13 and 14. However, it has not yet been
finally solved. In this section we present some preliminary results. At the same time we shall
reconsider the results of section 13 from a somewhat different point of view.

Section 13 utilizes practically only a part of the information contained in the bare terms. In
fact, the differential equations of section 13 keep the information coming from the terms of the
order of z,z; '/omj and z,z3'/5pf (where dmg and 642 are the mass counterterms, see below).
To gain all the information contained in the initial renormalized €quations it is necessary that
the terms proportional to z,, z, and z, should be separated. In the present section we shall discuss
how to do this.

16.1. Formulation of the problem

Now let us consider again the renormalized equations describing the interaction (8.1) of two
scalar fields ¢ and y and keep the terms proportional to zy, z, and z;. Introduce the designation:

O] To(x,) ™ (x2) ... x(x) . .. [0 = <plx1)p* (x2) ... x(x) ... ).

First we consider the equation for the propagator

2200 (o(x1)0 ™ (x2)> + 220mf {plx )@ (x5)> = 3(x; — x3) + Azq {@x (%)™ (x,)D, a6

where dm? is the mass counterterm, z, and z, are the renormalization constants. If in this equation
one formally takes the limit z; = 0, z, = 0, 6m2 = oo, one obtains (considering that z,dm3 — oo):

Az, {<(P(x1)X(x1)(P+(x2)> - 2221_1/1_15"15 ((p(xl)cp+(x2)>} + d(x; — x3) = 0. (16.2)

However, the initial equation (16.1) is more informative since when passing over to the limit z, =0
we loose the term z,[] (p(x)p*(x,)>. .

This term may, indeed, be neglected as long as we consider quantities of the type of
2y {@(x1)x(x1)¢ *(x;)). Note, that in deriving the integral equations in section 2 we met just with
this type of uncertainty, i.e. we found the limit z10(xy)x(x,) at z; —» 0.

Let us multiply now the left-hand side of eq. (16.2) by the infinitely large quantity z; 1. Since
the left-hand side of eq. (16.2) is tending to zero, we obtain the uncertainty 0 x oo. To resolve it
one should again turn to eq. (16.1). By multiplying it by z; ' and considering the limit z,, z, =0,
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we have
z3 Az {<@lx x(x D * (x2)> — 2527 AT 1omE {@(x1)@ ™ (x2))} + 6(x; — x3)] =
O<ox)e™(x,)).  (16.3)

This equation cannot be obtained from (16.2) and must be considered independently. Equation
(16.2) should be considered as an equation determining the most singular part of the product
@(x)x(x, + ¢)le = 0, whereas eq. (16.3) fixes the next to the leading singularity of this product.

The analogous situation arises when the higher Green functions are considered. Remember
that from the integral equations of section 8 it follows that there exists only the pole of the functions
p, at the point ¢ = (d, 0), the residue at this pole being expressed through the coupling constant.
It is this pole that determines the leading asymptotical term in the Green functions when any two
of its arguments are close to one another (see below). The structure of the functions p,(s) is other-
wise arbitrary. By supplementing the initial integral equations with those for tensor fields we
establish a correspondence between the poles of the functions p, and various fields. As a result
we come to a universal scheme in which all the fields are treated on equal grounds. As has been
shown in section 11 this scheme does not depend on the initial Lagrangian. Confirming ourselves
to this universal scheme alone, however, we are unable to obtain any information on the quantum
numbers of the poles of the functions p,. To gain the necessary information one should consider
the renormalized equations with the terms of the order of z,, z,, z; kept and fulfill then various
limiting transitions like the ones we did while deriving egs. (16.2) and (16.3).

Solution of integral equations of section 8 should be regarded as only the first step towards this
direction (they are analogous to eq. (16.2). The terms z,[] and z,y where 7 is the bare vertex are
omitted in the derivation of these equations.

According to what has been said above (see the paragraph after eq. (16.3)) integral equations
determine only the leading part of the asymptotical behaviour of the Green function when two of its
arguments are close to one another. Therefore, the poles of the functions p, at the point [ = d
must be connected with the most singular part of the asymptotical behaviour. Hence it follows that
the dimension d of the fundamental field is the smallest of all the dimensions 1,. Note that this statement
cannot be treated as a consequence of integral equations within which none of the fields (11.15)
is anyhow singled out.

The next step is to take into account the discarded terms and to obtain additional equations for
higher Green functions analogous to eq. (16.3). As is shown, below these terms destroy the democracy
of the fields in the set (11.5) and distinguish the fundamental fields. The discussion of the term z,[]
was started in section 13 and is continued below. However, first we consider (in more detail than
in section 13) the resolving of the uncertainties in eqgs. (16.2), (16.3) and find the constants z,, z, and
z3.

16.2. Equations for propagators. Dynamical restrictions on dimensions of fundamental fields

Represent the left-hand sides of egs. (16.2) and (16.3) as limits of the type*

Jdﬂazl(e)co(x)x(x + &)e-o0 JdQEZz' {@)z1(e)p()x(x + €)]c-0-

* Another way to define the renormalization constants has been done in ref. [66].
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Here | dQ, stands for averaging with respect to the angles of the vector ¢, and
zy(8) = ay (8%, zy(e) = ap ()2, Omj = a,fe? (16.4)

where a,, a, and a,, are constants.
Substituting these equations in (16.1) we find

* Jdgc Co(x)x(x, + ot (x))) =

= {% (@)t 4 2 (82)-“1”21:} C@Le)e ™ (x2)> — ap '+ (6)73(x, — x,). (165)
This equation is equivalent to eqs. (16.2), (16.3) taken together. If we multiply both its parts by
(¢%)** and calculate the limit ¢ — 0, we obtain eq. (16.2). Multiplying both its parts by (¢2)* ~* we
get in the limit eq. (16.3).

On the other hand the left-hand side of eq. (16.5) can be found from the explicit form of the
function {@(x,)x(x3)@*(x,)> at x; = x; +&e—-0

CPx)(x3)0 ™t (%2)D ] g5 my ~ fdp 72 { 0%(x, X, |p) — (p2*"QP~U(x,x3|p)} (16.6)

= (%)% {ao + a,8,0, + 056> [0 + o56,£,0,0, + ...} {@(x )" (x,5)>
+ (€)1 LBy + Bie,d, + Pre? + Bre,8,0,0, ... }0(x; — xy). (16.7)

Here o; and B; are known constants depending on d and 6. We do not need their explicit form.
For obtaining (16.7) from (16.6) relations (4.5) and (13.8) were used. The terms of the first line present
the expansion of the function Q°~¢ in the powers of ¢, while the terms of the second line present
that of the function Q. If we average eq. (16.7) over the angles of the vector ¢,, in the limit &2 — 0
the former turn into (16.5). We have

Jdﬂs {o(x)xlxy + &)@ (x2)) = (€2)7% {ag + 26?00 + -} {plx 1) (x2)>
+ (g2 TITNRTRLB (X, — x,) + Be208(x; — x) + ...} (16.8)
By comparing this expression with (16.5) we find
a, —oy; — 1 = —16, a, =d+3i5—h
or
z, ~ (2)it0I2-h 2, ~ (82 HH 1, 2,251 ~ (89271, (16.9)

The coefficients of proportionality in (16.9) can also be calculated if one uses explicit expressions
for the constants «; and f;, see e.g. eq. (16.14b).

Relations (16.9) guarantees the equivalence of eqs. (16.5) and (16.8) only if the term
B, - (e2)747%2+h+*1M5(x, — x,) in the right-hand side of (16.8) is less singular than the other
terms. Indeed, this term is absent from eq. (16.5) which fixes three most singular terms and, there-
fore, it is less singular than any of them (if eq. (16.8) is multiplied by z,, or z, - z; !, we obtain
eq. (16.2) or (16.3) from which this term is absent). As a matter of fact it is sufficient to require that
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the term fB,(e?) ¢ ¥2***1[]§(x,,) be less singular than o«(e?)~%2*!, This gives: d < h. This
condition is a dynamical restriction on the dimension of the field ¢ x). Taking into account the
kinematical limitations of section 3 we have

h—1<d<h (16.10)

It is essential that this condition distinguishes the fundamental field as compared with the com-
posite fields, since the dimension of the latter is beyond this range.

Note that according to (16.9) the constant z, — O for all d > h — 1. The constant z, tends to
zero only if 2d + 6 = D. This condition is fulfilled if D > 6. Finally, the term

if the dimension d is within the range of (16.10).
The equation for the propagator of the field y can be treated in the same fashion

23 O e )xl(x2)> + z30mg (xx)x(x2)> = (xg — x3) + Azy {plx )™ (x)x(x2)>.  (16.11)
In the limit z, = 0, z; = 0 eq. (16.11) is equivalent to the two equations
Azy {<@(x)o™ (x)x(x2)> — zazy 'OugA™" {ulx)u(x2)>} + 8(x; — x2) = 0, (16.11a)
Azyzz ' {K@(x )@  (x)x(x2)> — zazy 1OupA ™  (olx)x(x2)D ) + 23 10(xq — x3)
= 0O xxdxlxz)>.  (16.11b)

The same as above we shall define the left-hand sides of these equations as the limits of the quanti-
ties

jdﬂazl(S)fp(X)W(x +¢) and Jdﬂzzl(e)ZJ "@e(x)p ™ (x + e).

In this case for the constant z; we find

z3(e) ~ (2)°7**1 (16.12)
and for the dimension ¢ of the field ¥ we obtain by analogy with (16.10)
h—1<dé<h (16.13)

Using (16.9) and (16.12) it is easy to find the expression for the renormalized coupling constant.
Assuming that

g = 21_1222.3./2/10
we find
AofAg ~ (2)* 732,

This relation is seen to be finite in the six-dimensional space only, where the interaction (8.1) is
renormalizable. At D > 6 this ratio is equal to zero (the interaction is unrenormalizable).

Now we present another restriction on the dimensions d and é that results from the joint
consideration of egs. (16.2) and (16.11a). Let us assume that

Az, = a-(Ge2)roz-h
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where a is some constant. Then we have

Azy {@lx)x(x)@*(x2)) — 225"”5 <(P(x1)(l’+(x2)> (16.14)

= — ‘n_ 1.2\d+ 6/2 —~hpyddd,
ag sin 7(d — h)(28 ) 0 (xl, xX; + 8|x2) o (16.14&)

n N(ddo) T(D — 8)/2T(D + & — 2d)/2)
sinn(d — W IT(h—d+ )T(D — d) TG/2)T(2d — 9)/2)

O(x; — x,).
(16.14b)

Here the normalization (2.8) is used: g is the coupling constant and N is the factor (5.10). When
passing from (16.14) to (16.14a) we used relations (16.6)—(16.9). The second term in (16.14) is canceled
by the term proportional to a,. The contribution next in the degree of singularity is given by the
function Q* (the term B, - (¢2)"*~%2**5(x, — x,)). Calculating the factor f, we obtain eq. (16.14b)
Substituting now (16.14b) into (16.2) we find

B 7 N(dds)-T(D — 8)/)T(D + 6 — 2d)/2) _
"~ sinm(d — WI(h — d + DID — ATG2)T(2d — 0)2)

=ag

ag -1 (16.14c)

One can similarly show that

Azy {@x1)p™ (x)x(x2)> + 220u5 {xlx)x(x2)>
7 - N(ddd) T?(D — 9)/2)
sinn(é — WI'(h — 6 + DI'(D — 6) '%(8/2)
where a is the same constant as in (16.14b). From eq. (16.11a) we have
n N(ddSI*(D — 6)/2)
% sin S — k) T(h — & + DID — T28/2)

= ag 8(x, — X5) (16.14d)

Comparing this equation with eq. (16.14c) we find

(D - 6)/T(6 —h)  T(D + 6 — 2d)/2)I'(d — h) (16.14¢)
TE/2TMD —-68)  T(2d—-8)/QT(D —d) '
We should emphasize that this relation between d and J is a consequence of the fact that egs. (16.2)
and (16.11a) and, therefore, (16.14), (16.14d) include the same renormalization constant.

It is worth noting in conclusion that a more detailed utilization of the initial set of renormalized
integral equations with the bare term (8.3)+8.7) kept allows to obtain the relations presented.
Indeed, by calculating the bare term with the use of the equations for the vertex Green function
of the fundamental fields in the two channels we come again to equation (16.14¢). The analogous
program may be formulated for the composite fields out of which we believe the relations for the
dimensions of the composite fields can be obtained.

16.3. Equations for higher Green functions

Now we discuss how one can take consistently into account the terms ~z,, z, and z; in the equa-
tions for higher Green functions. Consider the equation
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2,0 {@(x1)@ Tx)x(x3))> + 225m(2, {plx)o ™t (x,)x(x3)> (16.15)
= 2z {@(x,)x(x)0 T (x2)x(x3))
= 22,G(x12)D(xy3) + Az1 {@(x)x(x1)p * (x2)x(X3) D conn. (16.16)

where <...>.onn. i the connected part of the Green function, G(x) and D(x) are propagators of the
fields ¢ and y. The first term in (16.16) is the bare term designated above by y. In the limit z; — 0,
z, — 0 egs. (16.15)(16.16) are equivalent to the set of three equations

Azy <‘P(x1)X(x1)(P+(xz)X(x3)>conn. - Zzam% ((p(x1)¢+(x2)x(x3)> =0, (16.17)
O <e(x)e " (x2)x(x3)>
= Az;25 1 {@0x 0% 1)@ " (X2)2(X3) Deonn. — MG (X )0 (x2)x(x3) D, (16.18)

A L@(x)x(x1)0 T (X)1(X3) Deonn, + 21 1220mG {P(x1)0 T (x)x(x3))
- ZI_IZZD <q0(x1)(p+(x2)x(x3)> = —AG(x;,)D(x,3). (16.19)

Equations of the type (16.17), (16.18) and (16.19) are essentially independent and contain different
information. Such equations can be written for any connected Green function. To make them
meaningful it is necessary to resolve all the uncertainties of the type z,o(x)x(x,), .23 *@(x;)x(x,)
— ..., @(x)x(x,) — ..., where the dots imply subtractions. To this end it is sufficient to substitute
the product | dQ,e(x)x(x + &) for ¢(x)x(x) and to use expressions (16.9) for the renormalization
constants. This has been carried out partially in section 13 for the example of equations of the type
(16.18).

16.4. Conclusion

In conclusion we would like to mention some problems which have not been discussed in the
review and which should be solved in the first place.

This concerns first of all the development of a formalism which would allow gauge fields to
be included into the scheme. In this way some results have been attained (concerning mostly
electrodynamics), but the question has not yet been solved completely.

Another problem concerns the investigation of theories with internal symmetry and establish-
ment of all possible types of the latter. Some results in this direction now can be obtained by using
the above relation between the dimensions d and é and the dynamical restrictions on them, see
(16.10), (16.13). Indeed, in the theory with internal symmetry the equation of the type of (16.14¢)
also exists, but in this case it depends on the type of this symmetry (the dependence is easily found).
It is obvious that the solution of egs. (16.10), (16.13) and (16.14¢) does not exist for all types of
symmetry.

One of the most important problems is a further investigation of vertices that include concerned
currents, since one must know such vertices to be able to formulate experimental predictions.
Note that a number of additional restrictions can be found for the vertices discussed in sections 6
and 7. It has been shown above that the dimension of the fundamental fields 4 is limited by the
inequality d < 1D. This means that the tensor fields O with the dimension d + s considered in
sections 6, 7, 12 do not contribute into the operator expansion of the product ¢,x,)j,(x,), other-
wise d > D — 2 (this is the consequence of positivity, see section 7). However, the inequalities
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d < 3D and d > D — 2 are compatible at D = 2,3 only. Thus at D > 4 the appearance of the
fields O; in the partial wave expansion of vertices including the product ¢,j, should be forbidden.
According to sections 11, 12 this leads to an infinite set of additional conditions which guarantee
the absence of poles of the functions p,(a) at the points g, = (d + s, s).

These conditions must be imposed on the general solution of the Ward identities (see section 6),
i.e. to a rather narrow class of conformally invariant functions. Therefore, they may prove to be
rather informative. Note, that the above said does not concern the vertices including the product
Ju(x1)04(x;), where O, is some compound field (scalar or tensor), since the dimensions of compound
fields lie beyond the interval (16.10) and the operator expansion of this product could, in principle,
include the fields 0.

It is worth noting that the final solution of the pointed problems may become possible no
sooner than all the questions about the closing of the equations are answered. In conclusion we
emphasize once again that to clarify the physics underlying this theory one must break the confor-
mal invariance by keeping the mass terms and consider the mass shell.

Appendix 1. Conformal group in one- and two-dimensional space

Al. General properties of representations

Conformal transformations of the one-dimensional space x from a three-parametric group of

fractional-linear transformations
ax + f
O — = 1’ R

b wo—— xd — By (AL1)

which is locally isomorphic to the group SO (2.1) [72]. These transformations comprise the
analog of translations (y = 0,a = § = 1), scale transformations (y = g = 0) and special conformal
transformations (x = 6 = 1, f = 0). Their generators (P, D and K) satisfy the commutational
relations

[D,P]=iP, [D,K]= —iK, [P,K]= —2iD.

In a coordinate realization (in x-axis) the generators are given by the equations

P|x> =id,|x), D|x)> = —i(l + x8,)|xD, K|x) =i(x*8, + 2Ix)|x), (Al1.2)
where [ is the analog of the scale dimension. Generators (A1.2) act in the space of functions
fx) = {f]x).

Irreducible representations of the group SO(2, 1) are well known [72]. They are characterized
by the scale dimension I, which determines the Casimir operator values equal to:

Q=Di~—-D)—-PK=1l-1). ‘ (A1.3)

Note that in ref. [ 72] the analysis of single-valued representations of the group SO(2, 1) is given,
while for our purpose the infinite-valued representations [12, 16] are of more interest. They are
the representations of the universal covering group of the SO(2, 1) group.

To describe the latter it is appropriate to introduce a basis consisting of eigen vectors of the
generator A of the group SO(2) (maximal compact subgroup of SO(2, 1) group). This generator
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is equal to

A =¥HP + K). (Al1.4)
Transformations of the subgroup SO(2) correspond to the values of the parameters in (Al.1)
obeying -

a? + 2 =1, é=a. (Al.4a)
It may be shown that [72] its eigen values in the irreducible representation space have the discrete

spectrum: A = A + m where 1 is a fixed parameter and m =0, 1, .... The number 4 may be
restricted to the interval

—-1<i<i
If A = 0,4, we have one and two-valued representations considered in [72]. Designate the eigen
vectors of the generator A as |, 1;m). We have

AlLA;my = @A+ m) |l A;m). (A1.5)

It is evident that representations with different parameters 4 are non-equivalent.

Thus the irreducible representations of the universal covering group are classified [12] by the
values of two parameters | and 1. According to (A1.3) two representations (/, 1) and (', A') are equi-
valent if and only if

I'=1-1 A=A.

It is evident that the universal covering group is infinite-sheeted, because the maximal compact
subgroup SO(2) has this property. Representations where A has rational values are multivalued.
For irrational values of 1 we have infinite-valued representations. This can readily be seen when
passing to the realization [72] of the SO(2, 1) group on circumference, see subsection 3.2, where
this realization has been comprehensively considered for the analysis of field transformation
properties for compact transformations (see eq. (3.8)).

Introduce the coordinate basis

LAsx> = Y fu)|Li;m) (A1.6)
where fiA(x) = {(m,A;1 — I|I, A; x) are the eigen functions of generator A in realization (A1.2).
From (A1.2) and (A1.4,5) we have

4 1 1 —ix\**m
Jinl) ~ 1+ x’)’(l + ix) ‘ (AL7)

Consider the invariant scalar product of vectors (A1.6). According to (Al.2) it is the power
function of the difference (x; — x,). Note, however, that the exact form of this function can only
be found after the analysis of the transformation properties of vectors (A1.6) under finite trans-
formations. Using the results of section 3, see (3.7), we find [22]

Ay (%) ~ (x — ie) A x + i) A (A1.8)
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It may be shown that the function (A1.7) satisfies the equation

f dyAs —1, )y — X)fim) ~ S 1 m(X) (AL9)

(in calculations it is appropriate to change to a momentum representation, see [ 27]). This equation
implies the equivalence of representations (I, 4) and (1 — I, ) and can be rewritten in a more general
form

1= Li;x) = jdyAH,A(y —x)|L A5 ¥). : (A1.9a)

From this it follows in particular that the relation of completeness in the irreducible representation
space may be written in the form [22]

fdxll,i;x) 1=l =1 (A1.10)

A2. Discrete series

Representations of the discrete series require a spacial consideration, since only they can
contribute to the field states. There are two series of these representations: D, and D _, where the
parameter A takes a fixed value A = +1! for the D, series and the spectrum of the generator A is
limited by the condition m 2 0 for D, series. In the case of integer and half-integer ! values they
are described in [72]. In representations of the universal covering group 1 may take any real
values. This results in certain distinctions (in particular, if 4 is not equal to an integer or a half-
integer, there are no finite-dimensional representations, described in [72]) which are of a purely
mathematical interest and won’t be considered here. For our purposes it is essential that only the
representations of the discrete series satisfy the spectrality condition. This property holds when
passing to non-integer l. To see this, it is sufficient to consider the eigen functions of the generator A
which form a basis in the irreducible representations space. Assuming A = +1/ in (A1.7), for the
D, series we have

f,t X))~ (1 £ ix)72 "1 F ix)" (A1.11)

where [, = (I, A = +]) are the quantum numbers of the D, series representation. Calculating
the Fourier transform of (A1.11), we find [ 12, 27] (remember that m > 0) for D, series

Jiom®) ~ 0) P W m1j2-12D) ~ O(p)- p*' 1 e PLE " (p).

Analogously it can be seen that f;_,(p) = 0 at p > 0. Thus the spectrum of momenta is limited
by the condition +p > O (for the D, series).

Consider the transformation of vectors |/ , x> analogous to (A1.9a). In this case the scalar
product (A1.8) takes the form A, (x) ~ (x — ig)” 2. It can readily be seen that the transformation
(A1.9) is not reduced to the formal substitution - 1 — I, which corresponds, due to A = I, to a
change to the non-equivalent representation (1 — I, 1 — ). Instead of (A1.9) we have

. ' 2
deAl:l(y ~ X)fi, m¥) =fl+,m(x) ~(1 +1x)_12F1("m, 1;2[; 1+—1x>, (Al1.12)
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where the function A !(x) is determined by the equation

1 1

JAIZ‘(x - ALy = e |1, 0> = oy i

The functions f;, ,, and fi ,.m may be responsible for two sets of basis vectors
x> = S healmy, (x> = 3T hem (AL13)
which are related by the integral transformation
I, x> = JA,:l(y —x)|ly,y>dy. (Al.14)
This enables us to write the completeness relation in the form

fdx|l+,x> (x, I =1 (A1.15)

This completeness relation form is advantageous for the analysis of the partial wave expansion
of field states, see section 3. For (A1.15) to be effectively used, certain features of the basis vectors
I, x> should be considered.

Note first, that the generators A and K acting as differential operators in the basis |1 , x», become
nonlocal operators when passing to the basis |I,, x). Indeed, let |f) be any positive frequency
state. In accordance with (A1.13) it may be associated with two types of projections

fx) =S, %D and  f(x) = {f|l,,x) (A1.16)
which, due to (A1.14) are related by the transformation

fx) = f dyA; (y — x)f (). (A1.17)

The action of generators in the basis |/, x) is determined by the relations (A1.2). In particular,
the K-transformation is

LK x) =iQlx + x20,) (f|l4, x> = i2Ix + x*0,) f(x)

S K|, %) = jdyf(y)K(y, x), (A1.18)
where
K(y, x) = 1—(2lx + x%0 )—1——
¥ px; Ty —x—i0

In a similar way in the basis |I,, x> we find

K|, xy = '[dy<fll~+,y> K(y, x) (Al1.182)
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where

~ A —1r 1
K(y,x) = de' dy' A, (v = YK, XA (X — x) = o 2l + yzay)m-

In contrast to (A1.18) this transformation cannot be written in a differential form. The above said
is true for the generator A, which also proves to be an integral operator in basis (A1.14) and its
eigen functions f;, ,,(x), see (A1.12), are the solutions of the integral equation [22]

Afi, mlx) = de/\(y, ), ) = 4+ m)f7, i),

where

— 1 2 1

is the kernel of the generator A.
Let | /) be the set of field states. Assume that, e.g., | f> = @,,(x1)@,,(x,) |0D. Its projection on the

basis vector of the irreducible representation is an invariant three-point function. According to
(A1.16) there are two different three-point functions

C”dz(x|x1x2) = {x, l+|¢11(x1)§012(x2) |0> and inlz(xlxﬂcz) = <x97+'| (Pl.(x1)(P12(x2)|0>-
As it follows from (A1.17), they are related by the transformation
QM2 (xx,x,) = fdyAff(x — »C(yx x,). (A1.19)

If for the function C"'*>(xx,x,) the usual expression
CHtib(xx,x,) ~ (X1, — ig)"H 72 (x, — x — ig) Tl x, — x — jg)fr 727!
is chosen, then we find for the Q function

szz(xaxlxz) ~ 1 szl(l, I+1, —1,;21;1 — ﬁi) (A1.20)

(xlz)hﬂz_l X33 X23

In order to obtain (A1.20), it is necessary to calculate the integral arising in (A1.19)

1 1 1
s~ fdu(—u — i)’ (—u +ie + &’ (—u + ie + 1)°*

where
51+52+53=2, 51=ll—l2+l, 52-_—12—11"'[, 53=2—2l,

& =(x—xy), A =(x — x,).

For the calculation of this integral (for more detail see [22]) it is necessary to close the integration
contour via the lower half-plane (at 4 > 0, ¢ > 0) and to evaluate an integral over the cut discon-
tinuity along the negative half-axis from the point u = 0. As a result we obtain the table integral [ 73]
— 483 —ad —d3 1 . . i

S~ du-u (u+£) (u+l) NZZFI 1,52,2—53,1—‘5.
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This result is valid for any values of &, 4 if it is taken with the prescription & — £ + ig, A —» 1 + ie.
Substituting it to (A1.19), we obtain (A1.20).

In conclusion note that the above-said is readily generalized to the case of two-dimensional
time space. In order to pass to a two-dimensional space, two variables x, = 1{xe + x,) should
be introduced, where x, is the time, x, is the space coordinate. The conformal group of a two-
dimensional space consists of the transformations of type (Al.1),

, _oeXy t+ By

X, = . o0, 0, — = 1.
+ Yexs + 04 190+ Bivs

ThlS group is locally isomorphic to the group SO(2, 1) ® SO(2, 1). Changing to the coordinates

» 1t = 0,1, we obtain usual conformal transformations of a two-dimensional space. Irreducible
representatlons are characterized by four numbers [12]: the dimension d = (I, + [_), the
spin s = 4!, — I_) and two additional numbers 4. The appearance of the two numbers 1. is
due to the fact that in this case the maximal compact subgroup is SO(2) ® SO(2) and the universal
covering group of each group SO(2) is infinite-sheeted. An explicit expression for Q-functions
analogous to (A1.20) has been found in [22].

Appendix 2. The conformal group in four-dimensional space-time

The generators of infinitesimal conformal transformations form the SO(4,2) group algebra

[an Mpt] = i(guerp + gvauz - guvar - gvtMup)’
[Muv’ Pp] = i(gvau - guva)’
[Muv’ Kp] = i(ngJI(u - gypKv)’
(p,, D] =ipP, [K,,D] = —iK
[P, K,] = 2i(g,,D + M,,),
[(P,.P]=[K,K,]=[M,,D]=0.

The group SO(4,2) and its covering group SU(2,2) were examined in several works [35] Irreducible

representations of the universal covering group of SO(4,2) were considered in [9, 35¢, 52, 54].

To describe these representations we will use the analogy between the groups SO(4,2) and
SO(2,1) comprehensively considered in Appendix 1. The main complications arising in the case
of the group SO(4,2) are due to the spin structure of its representations. Taking into consideration
the above analogy we will restrict ourselves to a brief review of the main properties of the repre-
sentations.

Of greatest interest are the representations of type (3.3a), namely (j,, j2) @ (j,,Jj;) since it is this
class of representations to which the representations of the discrete series satisfying spectrality

condition (3.3) belong. Casimir operators for the representations (3.3a) take the values [9, 52]
(see also [22,74])

C,=(0-2%—-4+2,G; +1)+ 2,06 + 1)
3= = =20l + 1D —j202 + V] (A2.2)
C, =Xl -2 —( -2y + D) + 202 + D + 1] + 4jyja(y + DGz + 1)

(A2.1)

')
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For derivation of (A2.2) the definition of Casimir operators adopted in [35b] was used. As it
follows from (A2.2), Casimir operators are invariant under the substitution

-4 -1 j1 2 J,. (A2.3)

Consider the universal covering group of the conformal group. The maximal compact subgroup
of SO(4,2) is

SO4) ® SOQ2). (A2.4)

It is infinitesheeted, since it includes the group SO(2). Hence, the universal covering of the conformal

group is also infinitesheeted. Let A be the generator of the group SO(2). As in the above case of the
conformal group of a one-dimensional space, the spectrum of the generator A is discrete

A=414+m, (A2.5)

m are integers. If A = 0 we have single-valued representations of the group SO(4,2). For other
values of 1 the representations are multi- or infinite-valued.

Thus representations of the universal covering group are classified by the values of four numbers
l, j15 J2, A. Taking into account (A2.3), representations (1, j,,j,, 4) and (!, j},j;, ') are equivalent
provided that

l=4-10, ji=jun j=j  ¥V=2Ai

Consider the coordinate realization of the generators of the conformal group. Introduce a
discrete basis in the representation space. In the case of scalar representations ¢ = (I, 0) the basis
is [35b] the set of eigen vectors of commutating generators of the maximal compact subgroup
(A2.4). Let |0, A; v, m) be the basis vector, where (1 + m) is the eigen value (A2.5), v is the set of
the rest quantum numbers. Now introduce the coordinate basis analogous to (A1.6)

o, A x> = Y £740) |o, A; v, m), (A2.6)
where f7X(x) = (m,v; A, élo, A;x) is the eigen function of the complete set of commutating

generators of the group (A2.4) (its analog in a one-dimensional space is the function (A1.7)). The
action of the generators of the conformal group is defined in this basis by the equations

Plo,A;xy =i6,|a, 4; x), M, |o,2; x)y = [i(x,0, — x,8,) + Z,,]|0, 15 xD,
D|o,2; x> = —i(d + x,8,) |, A; x), (A2.7)
K,|o,4; x) = —i(2dx, + 2x,x,8, — x?8, + 2iL,,x,) |0, 4; x).

Finite transformations of the vectors (A2.6) explicitely depend on the number A, see section 3,
and has comprehensively been examined for the case of the one-dimensional space. Consider,
in particular, the transformation e* at = 2nn. Acting with this operator on both parts of the
decomposition (A2.6), and taking (A2.5) into account, we find

e?™A o, A; x) = e2"i g 1; x). (A2.8)
Consider the discrete series D . Their characteristic feature consists in limiting the spectrum

of momenta by the condition [35b, c]
p* >0, +p, >0  in D, series (A2.9)
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and in the fixed value of the number A
A= +d in D, series. (A2.10)

As in Appendix 1, it may be shown that the condition (A2.9) holds, when passing to the representa-
tions of the universal covering group, i.e. to any real dimension values. It is essential that due to
(A2.9) it is these representations that contribute to field states. In this connection we will be
interested only in unitary representations, which are necessary for the positivity of the field theory.
The condition of unitarity for the discrete series representations of the universal covering group
studied in [9, 52, 54] is of the form
I>1+j, if ji=j, j,=0 or j=0, j,=}j; 122+j+j2 if ji,j2 #0.
(A2.11)
Introduce the coordinate basis in the series D, representation space. Designate basis vectors
via |o ., x). Their properties are described in detail in Appendix 1. As in that appendix, one more
basis |6 ., x) may be introduced, where the generators of the conformal group are non-local, see

(A1.18a)
|5+9x> = -[dyA;+1(y - x)|0'+,}’>, (A212)

where A, (x) ~ (—x? + iex) !, and A, }(x) is determined by the relationship |dyA, (x, — )
x A; My — x3) = I(x; — x,), I(x) is the operator of projecting to the positive-frequency states
(its Fourier-transform is 6(p,)0(p?)). Similar to (A1.16), each field state may be associated with
two different projections to the basis vectors of the irreducible representations space. Accordingly,
there are two invariant three-point functions

Qﬁdldz(x|x1x2) = {x,0, |(0dl(x1)¢d2(x2) |O>, Cadldz(xxlxz) ={x,04 |§Da,(x1)§0dz(x2) |0>

related by the transformation of type (A1.19). An explicit expression for the Q¢ function was found
in [22], and its Fourier transform in x coordinate is given in section 3, see (3.14). This function
enters into the partial wave expansion of field states, since the completeness relation in the space
of the irreducible representation of the D, series is of the form

fdx|a+,x> {x,6.| =1L (A2.13)

In conclusion it should be noted that due to (A2.10) the transformation of the vectors |a ,, x)
by e2%A" depends on the dimension, see (A2.8, 10)

eZniAn |0'+, x> — e21|:iln |0_+, x>. . (A214)

The same aquation also holds for the basis |5, , x).

Appendix 3. Basic integral relations

In the present appendix the basic relations required for calculations in sections 5-7 have been
collected. Relationship (3.1) was obtained in [32] (see also [5], appendix). The derivation of the
relations (3.2) and (3.4) is given in [5], that of the rest in [56]:
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1 1 1
dez dx; @x2,) T F L2 G2, Fh-h=92 Ax2 )P hFLF2972 [Aﬁ:...u,(xzxs) — traces]

1 |
x (%x%4)(n—z4—12+13—s)/2 (%xis)(D—l4+l2—l3—s)/2 [Aif...vs(xeS) - traces]

= H2n)"27°1,8(x; — x4)0,,4.,, (A3.1)

1 1 1

d A —t
J oo et e Ut — )

— Qny I'(h — 6,)[(h — 8, + s)I'(h — 83)
(6, + s)I'(6,)(J5)
1 1 1
1 —t A3,

X2 Gx2 )5 B2, [ ul(x3x2) races | (A3.2)

X
6

where 6, + é, + d; = D;

1 1 1 2 o

f PG Gxg G Rl ulxers) = traces]
_ B =8h =8, 45— DI =8y) 1 1 1

) TG, +9TG, + DEG)  Gxbal > Gdr ™ Gk ) >

X {(h —0)(h — 6, + 5 — DAP(x3x )[4, (x3x,) — traces] (A3.3)
1 )

+ %(h - 53);;{2_ [guuk(xu)'{:i...ﬁk...u,(xsxz) - traces]}
12

where 6, + 6, + 63 = D;
de ! ! ! (g5 |x5%3) - . . gE4(x 4 |x2%3) — traces]
*3x3) (Gx34)7 (B3P T e T
(h — 8)0(h — 6,)T(h — 8)T(D — 8, + s — 1) A34)

= (2 hr
= @n) (6, + SIS, + IS5 + s)I(D — 6, — 1)

1 1 1
TR G (o L w(axa) — traces],

where 6, + 8, + 85 + s = D, @iy |%3x3) = Gu(x14)AT(X2X3);

1 1 1 2l xa .
J o et e L ) o) e

= (2n)* I'(h = 0)T'(h = 0,)I'(h — 3)T(D — 6, + s — 1)
TG, + 90, + ITG; + 90D — 6; = 1)

PN N R i PO _
8 { 2 (D -6, — )5, + S)A# xyx3)[AX . (x,x3) — traces] +
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b3 +s—1)
(D—(S — D(h — 6, — 1)(6, + 5)

[0206; — 1) + s(h — 1)]

1 1 1 ' 1
X —5— X1 9)A! X,X3) — traces — — —
x%2<z guuk( 12) " .us( 2 3) )}(%xfz)h e (%xfs)h 32— (%xgs)h 1
(A3.5)
where 6, + 6, + 03 + s = D;
dx,— ! ! 1 *(x4%3) [ 4 (x1|x2x3) qx“(x1|x2x3) — traces]
(2x14)'§1 (23524)'52 ( )63 ” - .

8 )T(h — 8)T(h — 8 )T(D — &, + s — 1)
T, + LG, + NG + LD — &, — 1)
(D=8, —1)(h—85—5)+sth—1)
(D — 5, — 1)(52 ¥ 5)

— ot

AAxyx3)[ A (xax3) — traces |

1 (h —8,)(0; — 8, — 1) 1
T2 D5, - - 52 ~ DO, +9) xu[z X121 o nX2%3) — traces}}
1 1 1
(A3.6)

@S G G

where(31+52+53+s=D;

(23514)'51 (23‘24)‘52 ( )63
) I'(h — DI'th — 6,)T'(h — 03 + 5 — 1) 1 1 1
= n) r(61 s TG, F DT, + 1) Gl 51 Gl @y ot

1 1
de4 q,’i"(lexlxa)[/lﬁi...ﬂs(x4x3) — traces]

X {(h — 8, — DD — 6, — D(h — 83 — 1) + sth — D]A2(x1 x3) A5} (x2%3) — traces)

+ 303 — 6, — s)h — 52)[ Z guuk(xu)/l .ﬁk...us(x2x3) - traces:|}, (A3.7)

where 6, + 6, + 63 =D — 1,
2

x?
du (x2|x1x3) = g (X2)A34 (X1 x3) = x12 AAx1x,) + 5 'lxz(x‘txs)
14 X34

1 1 1 1
de [Z guv(x24)gvm‘(xl4)’1 . .ﬁk...us(x4x3) - traces]

‘iz 3‘%4)"1 (2xz4)'52 G 3634)‘53 x24
— Qn) [(h — 6,)T'(h — 6)[(h — 3 +s— 1) 1 1 1
B (6, + s — DI(6)I(33) (2x12)h -1 (1x13)h %2 (1 3 )h &

h
x {_S(Ff__—_l)T) Axyx3) [ A pxaX3) — traces] + | (A3.8)
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16;h—83)+th—-—1D(s—-1) 1 &
5 2( 522;1 _'_( S — 1))( ) Tzkzl [guuk(xlz)iz: ...ﬁk,..us(x2x3) - traces]},

where 6, + 6, + 63 =D — 1,

guv(x24)gvuk(xl4) = Guu(X12) — Zsziﬁz(x1x4)l,’i,1(xzx4);

1 1 1
dx AZ2(xyx,)[ A5 X3X4) — traces A39
J‘ 4(2x34)51 (x%4)62 (%x%4)63 u( 3 4)[ ﬂl---l‘s( 3 4) ] ( )
oy Th =8+ I =0T =8 1 1 1
I'(6,)I'(8,)I(65 + 5) 23, (3x3.)" 7% (Gxia)r % (a2,

X {Z(h — 61)lﬁ2(x3x1)[,1,’j; .. u{X3x,) —traces|]

1
[ Z BumX 12250 g u(X3X2) — traces]},
x12

where 6, + 6, + 03 = D.

Appendix 4. Amputation condition for three-point functions of scalar, vector and tensor

Represent a three-point function {4, B} in the form
{A B} = ACdldzds(X1x2x3) + BC“’UZdS(x1x2x3) (A4 1)

where C; and C, are determined in (2.10). De51gnate via {A4;, B;} the function {4, B} amputated
“in the ith leg (i = 1,2, 3)

(4, B} = &Cqods 4 BCgoss,

where C1 ; and C2 ; are obtained from C,; and C, by the substitution d; - D — d,. The coefficients
A; and B; may be expressed via 4, B

A; = ;A + BB, B, = 7,4 + 6B, (A4.2)
where «;, B;, y; and J; are determined by the relations

fdxA,,‘ll(xl — X)CT 9 (xx,x3) = o, CT17293 4y, CFro24s (A4.3a)
and analogously in the general case

[arci=atiivne, [arci=peuir e, (A43)
The integrals appeared are calculated using the relationships of Appendix 3. From (A3.5,6)
we have

(dl_l)(D—‘dl +d2—d3—s_l)+S(D_2)
(dl_l)(D_d1+d2_d3+S_l) ’

oy =T
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B, =T 2sth —dy)dy +d3 —dy +5—1)
17 d, — 1D —d; +dy—ds+s—1)

(dl+d3_d2+5—1)[(D—d1_1)(d1+d2_d3_5_1)+S(D_2)]

W= T D —d, —d, 7 dy ¥ 51D —d, +d; —dy +s -1
R 2d, — hds — dy)
d, — 1D —d, —dy +ds +s—1)D—dy +d, —d3 +5— 1)
where
1_1=F((D—d1—d2+d3+s+1)/2)1"((D—d1+d2—-d3+s+1)/2)

T(d, —dy, +d; +s+ 1)/2T(d, +dy —ds + 5+ 1)/2)

Using (A3.7,8), we find that «,...d, are obtained from a,...d,; by the substitution d; 2 d,.
Finally, using (A3.3) we find
D—d1+d2_d3+S_1.D_d2—d3+d1 +S—1

> =0
d2+d3—d1+s—l dl—d2+d3+s_1 B3

(X3=r3

2(dy — h)
Y3 = l_“3 s
dy—dy+dy+s5s—1)d,+dy—dy, +s5s—1)
where TI'; is obtained from I'; by the substitution d; @ d; and s - s — 2.

Now let us find the three-point function {4, B} satisfying the amputation condition. For this
it is necessary to find the expressions for the coefficients A = A(d,d,d,), B = B(d,d,d;) such as
the result of amputation of the function { A(d,d,d;), B(d,d,d;)} in the ith leg would coincide
with the formal substitution d; - D — d;. For example, the condition of amputation in a tensor
leg implies that

A(D - dla dz,ds) = [1(d1d2d3)a B(D - dl’d29d3) = §1(d1d2d3)

and analogously in scalar and vector legs. Taking (A4.2) into consideration, we obtain a set of
functional equations for A and B. The solution of these equations has been considered in [56].
Let, in particular, a general expression for the function { 4, B} be given, which satisfies the condition
of amputation over both scalar and tensor legs

{4,B} =T dytds—di+s+1\ (dy—dytd +s—1\(di ~ds+drts+]
3 - 2 2 2
xr<d1+d2+d3—D+s+1>
2

63_—-1

(d; — ds)

X [Kl(d1d2d3){d2 _— dl - d3 - S + 1, 1} + Kz(d1d2d3)m
1

><{(D—dl+s—1)(dl+d3—alz+s—1) 1}]
(d, — d3) )

where K, and K, are the arbitrary functions which are invariant under each of the substitutions
dl_)D_dl andd3_’D_d3.
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Appendix 5. Current leg amputation. Calculation of normalization factors for the functions
(6.24, 25) and (6.29, 30)

Take in (A4.2) at i =2 the conserved current dimension: d, = D — 1. For the coefficients
®,...0, we have (at s # 0)

o
a(d1d2d3)|d2=D—1 =|: 2 b

Y2 02 ,=D—1

I'((ds—d;+5+2)/2)I'((d, —d3+5)/2)
I'(D—d,+d;+8)/2T(D+d, —ds+5)/2)

dl_d3 . —S(D—2—d1+d3+S)
X l:d1_d3 _(D-=2—d,+d;3+5) |. (A5.])
d

i—dy—s 0 (di—dy—s)

_1
2

Note that det a = 0, hence the matrix (A5.1) has an eigen vector corresponding to eigen value zero.
It can readily be seen, that this vector is associated with the transverse function {s(D—2~d,
+ d3 + s)/(d, — ds), 1}, see (6.25). Thus, the amputation of the transverse function with respect
to the current leg reduces it to zero. This is due to the inverse current propagator, determined by
the limit [ —>Jj=1 of expressions (2.5) at s=1, proves to be the longitudinal one: A,,‘j‘(x)ﬂug,w(x)/x2
=30,0, In x?. From this it follows that the amputation of any function {4, B} at d, = D — 1
with respect to the current argument leads to the universal (up to a factor) result

{A~2s§2}|dz=p—1 ~{d, —d; — 5,1} ’ (A52)
Consider now the amputation of the functions {4, B} for d, = 1. For this purpose it is necessary

to consider the matrix which is inverse to (A5.1). Since det a = 0, matrix a ! is singular, it should
be determined as the matrix a(d,d,d;) in the limit d, — 1. Assuming that d, = 1 + ¢ we have

I'(D—d, +d; +s)/I(D — s + d, — d5 + 5)/2)
I'(dy — d, + s +2)2)I((d, — d3 + s + 2)/2)

5 ) —s(d, —d; —s)
x dy —d, _(d1 —dy)d, —d; —5) |, (A5.3)
D—-2—-d, +dy+5 D—-2—d +ds+s

a~l= l(h -1)
€

where & — 0. At & # 0 the determinant of this matrix is equal to zero, and the eigen vector with a
zero eigen value is the vector (A5.2). Thus, the amputation of the function (A5.2) leads to the
indefinite quantity 0 x co. Resolving it, we will obtain a finite result. The amputation of any
other function gives the infinite result: {s(D — 2 — d, + d; + s)/(d, — d3), 1}/e.

It now follows, that the normalization coefficients of the three-point functions are singular,
provided that the amputation condition is met. The internal current leg integrals include an
indefinite 0 x oo factor and require a current dimension regularization. This, however, requires
cumbersome calculations. Hence it is appropriate instead of a usual set of three-point functions,
satisfying the current argument amputation conditions, to introduce auxiliary functions (6.29, 30),
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determined by the conditions (6.28). For the calculation of the normalization coefficients of these
functions, one uses the relations [56]

m
S 1 e
dx, dx;C372%3(xx,x3)CT 72B(x'x,x3) = 5 j dx, dx;C57%3(xx,x5)C3 "2‘;3(x’x2x3)

= (2n)°27° 7! §0,40(x — X),
r

dx, dx3 C3783(xx,%3)C8 T493(x'x,x3) = (2m)P2 7" 1s(D + 25 — 2)30,58(x — X),

where CJ1°2% and C%'°?%* are the functions entering into (A4.1), Ci9:8 and C59% are obtained
from them by the substitution d; > D — d;, i =1,2,3; §,, is determined by the condition

Y w054 f (6°) = f(0), and ), is given in (5.1a).

Appendix 6. Spinor fields. Yukawa model

All the results concerning scalar and tensor fields may readily be generalized to the case of
spinor fields. However, there are several problems which require special consideration. We will
restrict ourselves to the discussion of spinor fields ¥ (x) interacting with the pseudoscalar field
®,(x) (Yukawa model)

L, = APy, ¥0. (A6.1)

All calculations given below refer to the practically important case of a four-dimensional space
where the coupling constant is dimensionless. We will discuss (using the results of refs. [5,6]) the
partial wave expansion of vertices and Green functions including spinor fields, the dynamical
equations and the solution of the Ward identity.

The graphical form of dynamical equations for the interaction (A6.1) is given in section 8.
Solid and dashed lines in (8.3-8.7) should be associated now with the spinor field ¥, and pseudo-
scalar field ®@;, respectively. In principle the results of sections 9-13 and 16 can be applied to any
three-linear interaction, including (A6.1) as well. Certain changes arise however due to the more
complicated structure of the Green functions for spinor fields. They refer primarily to the form of
partial wave expansions and the Ward identities.

The spinor field dimension is limited by the positivity condition, see (A2.11), to

3
d>5.

A6.1. Two-point and three-point Green functions
The two-point function of spinor fields is equal to
i Td+3 %y

Gixy,) = <0| TY (x1)Px2) |O> = — 2n)? TG — d) (%xfz)d (A6.2)
where
P (xlz)u : (A6.3)

D
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Its normalization is determined by the condition
Gy U(x) = G4_[x). (A6.4)

Introduce the auxiliary functions

Sux) = T(d + 7)% Bix) = TE)Ex) 2.

(zx
The general expression for the conformal-invariant three-point function is
C'(x1x,%3) = C'¥(x,X,%;) + C'%(x1x,X3) ‘ (A6.5)
where
¥sCiys = £Cy, (A6.6)
1 I+d + é—4 ~
lea(x1x2x3) = ) (215)2 N(ld&)r( )Su—d+a)/2(x13)?5S(d—1+a)/2(x32)A(z+d—a)/2(x12)’
(A6.7)
' i I+d+d6-3 ~ ~
le&(xlxzxs) —5 @n )z N(ld(S)F( )S(l+d—a)/2(x12)'}’5A(1—d+.5)/2(x13)A(d—1+a)/z(x23),
(A6.8)
where

N(lda)z{r<5—l42-d—6)r<5—d;-l—&)r<l+c;—5)r(4~l;d+6) (A69)
_ _ _ —-1/2
xr(l+d;5 4)F(4—l+‘;+5)r(l d42—6+1)l_<d 142—6+1)} .

The normalization factors* are chosen so that the amputation conditions

Il

dxG; '(x; — x)C*¥(xx,%3) = C*~"4%(xx,x3),
o

| " (A6.10)
dxC¥(x,xx3)Gy H(x — x3) = CH*~%9(x, x,x,);

r

dxA; Hx; — x)C¥(x,x,x) = CH¥*79(x,x,X,) (A6.11)

o

would be met. Note that each of the two terms in the left-hand side of (A6.5) does not satisfy the
conditions (A6.10). For the functions C, we have

deGl—l(xl — X)CP(xx,x3) = CFH(x,X,x3),

(A6.12)
declf(xﬁxs)Ga_ Hx — x3) = —C¥ ~%x,x,%3).

* Here the normalization which is used differs from that of refs. [5, 6].
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The explicit expression (A6.9) is obtained from the orthogonality relation, see below. For calcula-
tions in (A6.10-12) we have used (A3.2) at s = 0 and the relation [40]

j dx4Sal(x14)552(3‘42)5&3(3‘34) = (2m)*85_4,(x13)S2 al(xsz)sz _s5(*12) (A6.12a)

where 6, + 0, + 63 = 4.
Consider the function with the current-dimension vector. Its general ys-invariant expressmn is

) 1 ~
Cff”’(xlxzxa) = ﬁ [1 + F(l, d)]Ss/z +(1—a)/2(x13)7,.5'3/2—(1—d)/z(xsz)A(Hq—3)/2(x12)

1—d\? _ ~ ~
+2|:1 —(—2—) jl(“‘d_?’) 1[F(l, d)— I]S(l+d—2)/2(x12)A(l—d+2)/2(x13)A(d—l+2)/2(x23)’1ﬁ3(x1x2)

(A6.13)

and may be represented as a sum of two terms C, = C,; + C,,, where C,, is the transverse
function: 83°C,, »(x;x,x3) = 0. The function C,, con51sts of terms proportional to F(I,d). Cal-
culating the divergence from (A6.13), we have

9 Czdaj(x1x2x3) = —( = DSgra-ay20x: Z)Z(4+l—d)/z(x13)5(4+d—l)/2(x23)' (A6.14)
Consider a three-point Green functions. Since interaction (A6.1) is y5 invariant, we have
G(xyx3x3) = <O| T‘Pdl(xﬂq_"dz(xz)q)a(xs) |0> = gC%%%(x,x,X3), (A6.15)

where g is the coupling constant
Gu(x1x2x3) = <0| T‘P,,(xl)‘T’d(xz)ju(xQ |0>

1 ~
(1 + £7)83/2(%13)7,8 3/2(x32)Au - 3/2(X12)

of

+(d — %)_l(f] - I)Sd_1(x12)A~1(x13)51(x23)/1,’f3(x1x2)} (A6.16)
where g; and f; are the coupling constants. The constant g; is determined from the Ward identity
022G (x1X,X3) = —ie[d(x; — x3) — (x; — x3)]Galx12) (A6.17)

and it is equal to
g{d) = }2m)~*el(d + H{Td — ITG — )} " (A6.18)

AG6.2. Partial wave expansion

The derivation of a partial wave expansion given in sections 3-5 is completely applicable in the
case of spinor fields. The only change refers to the first term in (4.6). Consider, e.g., the Green
function

Gi(x;X3X3x4) = <O| T\Pd(xl)\_l_ld(xz)(pb(x3)q)6(x4) |0>« (A6.19)
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Write down its partial wave expansion in the form

j:x:= ‘ Y +y@§[>&<>:. (A6.20)
6" a & a °

In contrast to (4.6), the internal line in the first term is associated with the inverse propagator of
the spinor field. According to section 4 this term is present in (A6.20) only in the case when the
spinor field dimension falls into the interval 3 < d < 2. This term is absent if d > 2. Consider
now the second term. In contrast with (5.1, 2) it is contributed by the spin-tensor representations

2+iw

1
;=£if”wm | (A6.21)

2—-iw
where j = (ji,j2) @ (i2,1), |j1 — j2| = 3. We will restrict ourselves to the discussion of the spinor
contribution (3,0) @ (0,%) to (A6.20). The three-point functions (A6.5) entering into (A6.20)
include a y5 noninvariant part.
Now change to the ys invariant Green function

G, - 3G, + y5Gyys). (A6.22)

As it follows from (A6.6), (A6.20) involves only terms of the type C', G, 'C', and C_G;'C"..
From (A6.12) and (A6.22) it follows that these terms are equal. Thus the expansion (A6.20) of the
ys invariant function G, may be written in the form

(A6.23)

where p(o) # p(d).
The orthogonality relation for the function C, is

d
1 212
= PG, = x2) (4629

where 8{'/? is determined by the condition

2+iw

1
o j Alypty)2(L) S ()01, = f ().

2-iw
In the normalization (A6.7-9) the function u, ,(J) is equal to

I+ I — )

G — I — 3 (A6.23)

fyj2() = 2(2m) 2

Relation (A6.12a) was used for its calculations. The orthogonality relation for the functions C_
may be obtained from (A6.24) using (A6.12). The orthogonality relation for the scalar leg for the
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the functions (A6.5) is of the form

! !
1®2 =1 5§?1)2A12(x12) + 55?,)4—125("1 — X3)}-

A6.3. Ward identity
Consider the Green function (d,d; > 2)
Gu(x1x2x3x4) = <0| T‘Pdl(xl)\T’d(xz)q)a(x:';)ju(x‘t) |0> (A6.26)

and find the function p; (o) corresponding to the spinor contribution in (A6.26). For this purpose
one substitutes the expansion of (A6.26) into the Ward identity. Using the orthogonality relation
(A6.24), we find [5, 6]

p,. (1) = — }2m)~2egN(d,do)N(1ds) ri—a

(8= di—d=0\ (4—d—d; +8\ (5—d,+d =8\ (d—d; +5+1
2 2 2 2

g (I +d, +8—4)2T((1+d;, —8)/2)T((dy — 14+ 5+ 1)/QT(5—I+d, —9)/2)

(4 —1+d)/2QT(4+1—d)/2)T(9—1—d)/2) (46.27)
The dynamical equation for Green function (A6.26) is of the form
i 4, J
Y, "-5-" d
where gA = —2u,,,(d). (A6.29)

Substituting the Ward identity solution into it, we find
Ad)resp;, () = gd),  Fd.d) =1

Taking into account (A6.29) the former relation is fulfilled identically and the latter relates the
value of the transverse part of the expansion of (A6.27) at | = d to the transverse coupling constant.
Note that in the case of scalar fields the equation analogous to (A6.28) is fulfilled identically,
since it does not comprise a transverse part.
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A6.4. Exact relation between fundamental field’s dimensions in the Yukawa model

In conclusion let us write the relation, connecting the dimensions d and & in the case of Yukawa
interaction. Similarly to section 16 one gets (for D-dimensional space)
(D —-38+1)/2T6—h)  T(D—2d+438)/21(d—h+%)
T(6 + 1)/2QT(D — ) I(@2d — 3)/2)T(D —d + %)

Appendix 7. Dependence between coupling constant and field dimension in 3-vertices apﬁroximation

Let us illustrate the above bootstrap program by an example of the theory A®® in the D-dimen-
tional space. Such a theory comprises two unknown constants: a field dimension d and a coupling
constant g. In 3-vertices approximation we have two equations, see (8.10). The Green function
equation containing energy-momentum tensor will be considered as the second one

Pa
(A7.1)

Let us now find the solution of this equation [36]. The integral in the right side represents a
conformal invariant 3-point function. For its calculation we consider a more general integral

= busllily) v’w()iL (A7)

Xals

’I;cv(XS)

x,l,

where ;. = (D, 2) are the quantum numbers of the energy-momentum tensor. The normalization
of the conformal invariant functions entering into (A7.2) has been chosen as in section 2. The
Green function Gi(x,x,x3) = (0| T®,(x)Py(x,)T,,(x3)|0> has been normalized by the Ward
identity [41]

d d
- aisle(szxs) = |:5(x1 —X3)03" + (x5 — X3)052 ) 0720(x1 — x3) D V0(x; — xs)]Gd(x1 2),
(A7.3)

. and equal

_27h 1 TE+ )T+ 1) 1
Qe D—1 T(h—d)  N(o,dd)

va(x1x2x3) = Cz'vrdd(xsxlxz)- (A7.4)
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We now find the coefficient ¢, 4(!,/;) entering into (A7.2). For this purpose one differentiates
(A7.2) with respect to x;. By utilizing the Ward identity (A7.3) we obtain on the left-hand side

- D—d .
J dJ’[a?Chd&(xﬁaJ’)]Cd&lz(xsyxz) T~ 7D 0y’ j dycllda(x1st’)sz(st’xz)

J ) (A7.5)
- J dyChx, x3))03* CH¥(xayx,) + 5 83 f dyC'1 (o, x5 ) CH12(x5yx,).

Using the relations of Appendix 3 and the following one

d+o+1, d—90+1, L =1 I + L] (X13)y
e (o A (e Lo G|

2
X13

_d+5+12 _5_d+l1 ll—IZ ll+12

N P (R SR EVET) WS AL
ll + 12 5 - d + 12 (x23)u

o)

D(5-D )

we find

" D—d
J dyCh#(x, x,y)0% C¥12(x, yx,) — — % f dyCH9(x x5 ) C¥2(x 3 yx,)

I I, - D
= ) N ol dON(1d0) i T Pl

x {%(5 —dD—-d-08)—5(D~-1)+ 2%(11 —bL)D -1, - 12)}

x (b)) O A (gm0,

(A7.6)

where

I, +d+6—D\ _(d+6—1 Lh+d—-6\_(D—-1,+d—-9
= {4 (O 222
><l_D—d—5+lz1_2D—-d—(5—l2I,é—d+lzrD—d+5—lz’
2 2 2 2
l+d+6—D\ [fl+d—0 l—d+06\_(d—-1+00\_/2D—-1—-d—}
(L D {4 L ot
- — —d — N -1/2
xl"(D I+d 5)1_(D+l d 5>F<D ) d+5>} .
2 2 2
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The right-hand side of (A7.2) is equal to
1 D-1
@mn* D

1 1 1
X .
ExZ,)UTE=DV2 (L2 NOFL=DZ (1,2 NP1 Fh)2

G Car B (xaxx,) = (I — L)N(os111y)

(A7.7)

Using (A7.5)(A7.7) and (A7.2) we find

8D

$asllila) = = 5 NollidO)No(,d0)N " (o11;1,) Il +1,—D+2)/2) 1

@2D—1,—1,+2)/2) (I, —L)XD—1,—1,)

y {F(D +1, -1, +2)F<D -1 ;12 +2)r(2D — 112— I +2)I,<l1 + 122 +2)}‘ !

X {%(Fa,a —Fp_y45)(6 —d)(D —d — 8) = HFus — Fp_a)h(D — 1)

d
+%[5 Fus— 222k, “](l — LD — 1, - lz)} (A78)

This is now used in (A7.2) in the limit [, = |, = d, 6 = d. From (A7.1, 2), (A7.4) and (A7.8), we find

9°6ua =3 i [ (2nfd = WINh + DI + DI — d + 1),

where g is the coupling constant and the function ﬁga,a is equal to

c . _ 4D, _ Fd-h+1) 1 (1
Pas=, M ¢g,(l112)=p— N (ordd) TD—d+)h—dh (h—dy*+3[24(D —d)— (D - )]

d

xd— 1

T((! +d+6 — DY2T((d— 1+ 8)/2)T((I +d — 8)/2)T (D — 1 +d — 8)/2)
T(D—d+1=38)/2)T(D—(d+1+3)2)T(3—d+ )/ 2T(D—d—1+8)/2) |

Assuming d = 0, for the coupling constant we find

4 (h d)z 1
=8 (d){h 4D = d) + Q(d)} (A7.9)

where p(d) is function (5.8),
Q(d) = ¥(3d — h) + V(D — 3d) — W(d/2) — ¥(h — d/2),
Y(x) = iln I'(x).

It should be noted that the normalization factor N(d, d, d) entering into the definition of the
function C*4(x, x,x,) becomes imaginary in the vicinity of d ~ h — 1. This results in an imaginary
coupling constant g. Therefore it will be convenient to include the factor N(d, d, d) into the coupling
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constant. Let us then define a new coupling constant through the relation

G*(d) = N*(d, d, d)g’,

bt )

1
Glx1x2%3) = GW(

From (A7.9) we find

G3(d) = 8p(d) =L~ DV2L()2) [4 h — &P

-1
T(@D — 3d))TD — ) | h dp —d) T Q(d)] ' (A7.10)

In conclusion let us give the dependence of the coupling constant on the dimensions appearing
in the theory A@* @y. As an example of the bootstrap equation consider an equation for current-
containing Green function. In a 3 vertices approximation we have

(A7.11)

This equation is solved similar to (A7.1), by using Ward identity. We find for the coupling constant
g(d, o)

g*(d, ) = 4u(d) {‘P(d —h +g) + ‘I’(h —d +g> + lP(d —g)

co(o-a-0)-u(?)x(s- )]} w12
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