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Abstract

A gauge-invariant approach to geometric quantization is developed. It yiclds a complete
quantum description for dynamical systems with non-trivial geometry and topology of the
phase space. The method is a global version of the gauge-invariant approach to quantization
of second-class constraints developed by Batalin, Fradkin and Fradkina (BFF). Physical
quantum states and quantum observables are respectively described by covariantly constant
sections of the Fock bundle and the bundle of hermitian operators over the phase space
with a flat connection defined by the nilpotent BFV-BRST operator. Perturbative calcula-
tion of the first non-trivial quantum correction to the Poisson brackets leads to the
Chevalley cocycle known in deformation quantization. Consistency conditions lead to a
topological quantization condition with metaplectic anomaly.

1. Introduction

Quantization of dynamical systems with curved phase space has been one of the
major problems in mathematical physics for more than two decades. In classical
mechanics the central object is an associative commutative algebra # of functions,
classical observables, on a symplectic manifold (.#, w). The problem of quantiza-
tion is to construct an associative non-commutative algebra of quantum observ-
ables F(#) satisfying the correspondence principles and to describe its representa-
tion by operators in the Hilbert space of quantum states.

The difficulty lies in the non-trivial global geometry of the phase space. No
general procedure is known to directly quantize non-linear Poisson brackets. At
the classical level, celebrated Dirac brackets [1-4] have established a relation
between dynamical systems with curved phase space and physically equivalent
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systems with flat phase space of higher dimension subject to second-class con-
straints. However, there is still no general way to directly quantize highly non-lin-
ear Dirac brackets without introducing some extra gauge degrees of freedom.

A variety of powerful approaches to quantization on symplectic manifolds have
been developed. The most-well-studied geometric quantization approach [5-19]
describes quantum states as sections of a certain line bundle with connection.
Although in some cases it does allow to adequately describe quantum physical
systems, it has two major drawbacks. First, though it provides a description of
quantum states, there is no way to quantize the entire algebra of classical
observables. Only a limited subalgebra of functions of the special form can be
quantized. Second, it is not directly derived from the basic physical principles.
Historically, a set of mathematical rules has been presented that was satisfactory
for quantization of some physical systems. Later, in applications to other systems it
was discovered that the original rules could lead to physically incorrect results and
had to be modified, so a number of corrections were introduced. In particular, the
original method failed to produce the correct quantum description for the multidi-
mensional harmonic oscillator (since it did not take into account normal ordering
effects, the shift %h was missing). That led to the so-called metaplectic correction
[9-11,14,15]. However, the problem of quantization of the entire algebra of
classical observables (since there is still no way to deal with “curved normal
ordering”, no higher order quantum corrections can be produced in this approach),
as well as the problem of physical substantiation, still remains open in this
approach (see Ref. [19] for the latest review). Of course, the first problem is a
consequence of the latter.

Another interesting approach was developed by Berezin [20]. It is known as the
Berezin quantization and is based on the notion of co- and contravariant symbols,
an extension of the standard theory of symbols of operators for systems with flat
phase space. Although this approach is very effective in the case of homogeneous
Kihler manifolds, it requires the explicit knowledge of an overcomplete set of
vectors in the space of functions on .# and, when no group action is present, there
is no conventional way to obtain them.

The deformation quantization approach was formulated in Refs. [21-23] (see
Ref. [24] for a review). It studiesgormal deformations of the algebra of classical
observables)in the context of Hochschild and Chevalley cohomologies of associa-
tive and Lie algebras and requires solving associativity and Jacobi identities.
However, it does not provide any information on Hilbert space representations of
resulting deformations. In particular, for compact .#, topological quantization
conditions are missing in this approach, and formal deformations obtained in this
way do not admit any hermitian representations for generic (non-integer) values of
the deformation parameter.

Thus, a general quantization method yielding both the 'correct(Hilbert space of
physical quantum states )and the(entire algebra of quantum observables repre-
sented by operators acting in this space] is needed. It is also desirable that such a
method would be naturally deduced from the basic physical principles, rather than
constitute a set of formal prescriptions.
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The present paper is an attempt to solve this problem. A global quantization
method that takes into account the geometry and topology of the phase space and
yields both the Hilbert space and the algebra of quantum observables is proposed.
It is based on the general BFF conversion procedure that allows one to convert
arbitrary second-class constraints into the first-class ones.

In a series of papers [25-28], Batalin, Fradkin and Fradkina have extended the
general BFV quantization method for dynamical systems with constraints [29-39]
to quantization of systems with curved phase space. Their quantization method for
curved phase space consists of three steps. First, by doubling the dimension of the
initial curved phase space and simultaneously imposing second-class constraints,
the original dynamical system is represented by the physically equivalent system
with canonical commutation relations and second-class constraints [25,26]. Then,
second-class constraints are converted into the first-class ones by introducing new
canonical variables, their number being equal to the number of constraints (BFF
conversion procedure) [25-28]. Finally, the resulting dynamical system with first-
class constraints is quantized according to the standard BFV quantization method
[30-39].

The idea of introducing auxiliary gauge degrees of freedom to convert second-
class constraints into the first-class ones is very natural from the physical point of
view. It dates its roots to the Stuckelberg variables that are introduced to achieve a
gauge-invariant description of massive vector fields [40]. Other applications of this
idea include a gauge-invariant description of chiral models, restoration of gauge
invariance in the action functional of Yang—Mills theory with sources [41] and a
gauge-invariant description of anomalies [42]. The BFF conversion procedure
[25-28] provides a practical implementation of this idea in the most general setting
and has a natural physical and geometrical interpretation in the case of quantiza-
tion on the curved phase space.

Remarkably, it turns out that in the global quantization context this physical
method leads to a beautiful geometric theory. As we will show, the Hilbert space
of physical quantum states can be interpreted as a space of covariantly constant
sections of the Fock bundle over .# with copies of the Fock space as fibers. The
structure group is a group of unitary operators in the Fock space. This bupdle has
a natural flat connection defined by the nilpotent BEV-BRST operator {2. In the
case when the structure group can be reduced to its finite-parametric subgroup
isomorphic to [Sp(2N; R) X U(1)]/Z,, the necessary and sufficient condition for
the existence of the Fock bundle reduces to the corrected topological quantization
condition with metaplectic anomaly [11,14,15]. Furthermore, the algebra of quan-
tum observables is realized as an algebra of covariantly constant sections of the
associated bundle with copies of the algebra of hermitian operators in the Fock
space as fibers. The group of unitary operators acts on the fibers by conjugations,
and the natural flat connection is defined by the adjoint operator ad Q. Working
with the entire infinite-dimensional Fock bundle instead of just a line bundle
(which can be regarded as a vacuum bundle; i.e. copies of the Fock vacuum are
glued to every point of .#), we are able to explicitly perform quantization of the
entire algebra of classical observables. In particular, perturbative calculation of the
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first non-trivial quantum correction to the Poisson brackets on .# leads to a
non-trivial Chevalley cocycle discovered by Vey in the deformation quantization
context [21,22].

Our approach can be called a gauge theory of geometric quantization. It should
be mentioned that there is a formal similarity between the construction of the
present paper and the gauge theory of higher spin fields developed in Refs.
[43-45]. The key idea is to enlarge the gauge symmetry from the finite-parametric
symmetry of (super)gravity to its infinite-dimensional enveloping algebra. The
corresponding gauge field contains an infinite tower of higher spin fields.

This paper is organized as follows. Section 2 is a brief reminder on BFV
quantization. In Section 3, dynamical systems with curved phase space are re-for-
mulated as systems with second-class constraints. The global definition of second-
class constraints requires the definition of the symplectic potential which can be
interpreted as a connection on the prequantum line bundle. Topological quantiza-
tion conditions ensuring the existence of such a bundle, the classification of
inequivalent bundles and the global definition of the action functional are briefly
discussed. Difficulties of quantization of systems with second-class constraints are
addressed and geometric quantization with polarization is interpreted as a
Gupta—-Bleuler-type quantization of second-class constraints.

In Section 4, according to the general BFF conversion procedure the classical
dynamical system with second-class constraints is converted into a system with
abelian first-class constraints by introducing auxiliary gauge degrees of freedom
that are described by canonical variables with standard canonical Poisson brackets.
Master equations for the first-class constraints and for classical observables com-
muting with them are solved perturbatively up to the third order in auxiliary
canonical variables. The converted dynamical system with first-class constraints can
be regarded as a gauge theory of the group of canonical transformations
Symp(R%"). (Here (R2", A) is a canonical phase space of auxiliary gauge degrees
of freedom.) The master equations for first-class constraints are nothing but
zero-curvature conditions for the corresponding gauge field, and classical observ-
ables are covariantly constant quantities. Geometrically, classical observables are
covariantly constant sections of the Symp(R?")-bundle over .# with copies of the
space of functions on the canonical phase space of gauge degrees of freedom as
fibers.

In Sections 5 and 6, BFV quantization of the BFF converted system is per-
formed. In Section 5, a quantization of the algebra of classical observables is
performed in terms of Weyl symbols. First non-trivial quantum corrections to the
classical expressions for the first-class constraints and observables are found
explicitly. A star product formula for functions on an arbitrary symplectic manifold
with a symplectic connection is obtained. The first non-trivial correction to the
Poisson brackets is computed. It coincides with the Chevalley cocycle known in
deformation quantization [21,20]. Geometrically, Weyl symbols of quantum observ-
ables are covariantly constant sections of the W-bundle, which is a quantization of
the Symp(R?¥)-bundle. It has copies of the Weyl algebra %, as fibers and is
endowed with a flat connection defined by the *-adjoint ad , £2 of the Weyl symbol
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{2 of the nilpotent BFV-BRST operator 0 A representation of this algebra by
hermitian operators in the Hilbert space of quantum states is constructed in
Section 6. Physical states are covariantly constant sections of the Fock bundle with
flat connection. Fibers of the Fock bundle over .# are copies of the standard Fock
space created by acting with creation operators obtained by quantization of the
auxiliary gauge degrees of freedom on the Fock vacuum. The structure group is a
group of unitary operators in the Fock space, and the flat connection is defined by
{1. We consider an important special case of Fock bundles when the structure
group can be reduced to its finite-dimensional subgroup isomorphic to [Sp(2N; R)
X U)]/Z, and obtain a topological quantization condition necessary for the
existence of such bundles. It coincides with the corrected quantization condition
with a metaplectic anomaly known in geometric quantization [11,14,15).

In conclusion, we discuss relations of our results with deformation and geomet-
ric quantization. Both of these approaches may be regarded as limited gauge fixed
versions of the gauge-invariant approach, each of them separately providing only a
partial view of the picture. The gauge-invariant approach based on BFV quantiza-
tion synthesizes these two directions. We also discuss possible avenues of further
development and indicate potential applications of the method to conformal and
topological field theories. Our notations and conventions are explained in Ap-
pendix A, while some perturbative calculations relevant to the star product are
gathered in Appendix B.

2. BFV quantization

Let us consider a classic dynamical system with irreducible first-class constraints
Ta= Ta(q) p)y a = 1, 2,...,”,

[Te> Tp] o =FasT,» (2.1)

where the structure functions f); = f;’ﬂ(q, p) generally depend on the phase space
variables g and p (for simplicity we will consider only Bose degrees of freedom)
and

[4' b;]ps =8} i,i=1,2,...,2N. (2.2)

According to Dirac [4], a classical observable A is a function of g and p whose

Poisson brackets with constraints vanish on the constraints surface defined by
T,=0,ie.

[Ta’ A]PB = VaA,BTﬁ (23)
for some functions V*# = VA(q, p). Obviously, classical observables are defined
modulo the equivalence

A=A+A1T, (2.4)

with arbitrary A*=2A%(q, p), and the equivalence classes form an associative
commutative algebra F . with respect to the standard multiplication of functions.
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The problem of quantization is to construct an associative non-commutative
algebra &, (%) of quantum observables satisfying the correspondence principle
and to describe its hermitian representation in the Hilbert space of quantum
states. A solution to this problem for systems subject to first-class constraints is
provided by the BFV quantization method [30-39].

Starting point of the BFV quantization is an extended phase space .#, [29-34].
The original phase space variables are complemented with dynamically active
lagrangian multipliers to the first-class constraints, A%, and their momenta ,

(A% 7] op = 35 (2.5)

and two sets of anticommuting ghosts and their momenta,
(ERTANES S (2.6)

{(#2, Co} =55 (2.7)

The subspace of variables (g, p) and (C; ) is called a minimal subspace .,
and the subspace of (A, ) and (£, C) an auxiliary subspace .#,,, so that
Mg, =M i O .

ext

An associative supercommutative algebra &, of functions on the extended
phase space .#,, is quantized in the standard way by substituting the classical
Poisson brackets with commutators and anticommutators:

qi: ﬁ,] =ih5;, (éi)T=éia (ﬁj)T =ﬁja

[A
(e, 0] =ineg, (A" =Fe, (3) =y,
(Co, ) =inag, (€)' =Cn () = -, 289
(9.8 =inog, (57 =9% (G)) -G,

The resulting algebra &, (#) has a natural grading with respect to the ghost
number gh defined as an eigenvalue of the ghost number operator &:

[£, 9| =in en(7) o, (2.9)
gh(g) = gh( p) = gh(4) = gh(#) =0,

gh(C) = —gh(F) = gh(£) = —gh(C) = 1.
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The heart of the BFV quantization is a nilpotent BFV operator Q generating
BRST transformations in the extended phase space:

0= 0y + Qs (2.10)
2=, (2.11)
02 =02, = {000, D} =0, (2.12)
gh(0) = gh(Qpin) = g(B,x) = 1, (2.13)
0r=0, O, =04, Q=0 (2.14)
Qoin=C°F, ~ Py mc LGB BB (2.15)
and
Qe =54, (2.16)

The structure operators U= U(4, p) are found from the nilpotence condition
(2.11). (For concreteness, C® order is assumed in the series (2.15).) Operators
y .4, p) are quantum counterparts of the classical constraints 7. The
aux111ary part ﬂaux can be interpreted as a minimal BFV operator for abehan
first-class constraints 7, = 0 with ghosts (&7, C) (recall that the m, are conjugate
momenta to the lagranglan multlphers A%).

The nilpotence condition for .Qmm can be solved recurrently by expanding 5
and U in powers of #. The number of non-vanishing terms in the sum in (2.15) is
called the rank of the system. For example, if in the classical theory (2.1) fJg are
constants (constraints form a closed Lie algebra), one has a rank-one system

a

Qpin = C2F, — 3C*CPIL 2, (2.17)
and
EAEAR (2.18)

Consider now an adjoint operator
add=[0,"}, (ad D)’ =0. (2.19)

The algebra %, (%) endowed with ad () becomes a graded differential algebra,
and one can consider its cohomology

e AN Ker(ad Q)
(.th(h), ad Q) = m‘)— (2.20)



576 E.S. Fradkin, V.Ya. Linetsky / Nuclear Physics B431 (1994) 569-621

According to the BFV quantization procedure, the algebra of quantum observ-
ables F,, () (quantization of Dirac’s classical observables) is identified with the
zero-ghost-number cohomology of the operator ad Q

Fans(1) = H(Fo(h), ad ), (2.21)

i.e. quantum observables & corresponding to the classical observables A are
closed zero-ghost-number operators,

ad (&) =0, (2:22)
modulo exact operators of the form (1 /ih){ﬁ, ¥},
PO | A a N
&' = + —ad Q(F), gh(P) = ~1. (2.23)

Equivalence (2.23) is a quantum generalization of the classical equivalence (2.4).
Thus, for every classical observable A4 the BFV quantization procedure gives a
receipt to construct the corresponding quantum observable M The practical

procedure consists of the following steps. FlI’St one has to find &, , a minimal
quantum BFV extension of 4. One looks for &7, in the form of a power series in
ghosts:
A =y + C"‘1 e C“kﬂaﬁl_'_'_'fkkg"ﬁl oo Py (2.24)
k=1 (k')

where &7, =.,(4, p) and M(ﬁ{'.'_’fk’f =P -P(g, p) are operators to be found from
the equation

[ Driar Fomin| = 0. (2.25)

As in the case of solving the nilpotence condition for _;,, Eq. (2.25) is solved
recurrently in powers of %. Correspondence with the classical observable A is
given by

lim (6(4, §)l-q.55) =4(a, P)- (2.26)

Finally, the cohomology class of &7 is parametrized by a gauge fermion v

mrn

Fy=5, + = {.(2 ). (2.27)

min
The gauge fermion ¥ is Grassmann-odd and has the form

$=C 6o +g?,, gh(¥)=-1, ¥ =¥, (2.28)

where the ;\XA are quantum gauge fixing conditions and the 6 are usually chosen in
the form 6% = A* (gauge A* = 0 complements the first-class constraints , = 0). In
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particular, the quantum hamiltonian governing the time evolution of the quantum
system is given by
1
Fy=Fpu+ —|
ih
and is called the unitarizing hamiltonian.
Let us now consider a representation of &, (%) by operators in the Hilbert

space R.,,. It has a natural grading with respect to the ghost number defined by
the eigenvalues of the ghost number operator

1) =h gh( 1)) ). (2.30)

Endowed with the hermitian nilpotent BFV-BRST operator {2, R, becomes a
cohomology complex. Elements of its cohomology,

Qa, ¥} (2.29)

H*(R oy, ) = %g)l (2.31)
are closed states,

Q1yy=0, (2.32a)
modulo exact states of the form {2 [x,ie.

lg'y =1g) + 021 x). (2.32b)

According to the BFV quantization procedure, the Hilbert space of physical
quantum states is identified with the zero-ghost-number cohomology

R opys = HO(R e ). - (2.33)

Physical states are also called singlets, while exact states are called null states since
their scalar products with closed states vanish.

For finite-dimensional systems all representations of ¥, (#) are equivalent.
However, this is not true for infinite-dimensional systems, where representation-
specific anomalies can arise. To obtain a correct physical description of the
quantum system, one needs to select a physically correct vacuum.

Dirac quantization of systems with first-class constraints [4] can be recovered
from the BFV formulation in the following way. Consider a Schrédinger represen-
tation

3 9
j= —lha—J, Ty = —lhﬁ,
s (2.34)
2 4
= h , C,=ih ,
ihogar  Comifyzs

and 4, ):, ¢ and £ are represented by operators of multiplication on the
corresponding classical variables. The extended Hilbert space R, =R, & R,
is defined as a space of complex functions of the variables g, A, C, &. Then
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zero-ghost-number states are independent of ghosts C and 2, ¢, = Py(q, A), and
the condition (24, = 0 reduces to

A . d
7a(q,—th£)¢ro=0, (2.35)
and
Yy
vl 0, (2.36)

i.e. (2.32a) enforces quantum constraints on the physical states.
The gauge fixed Schrédinger equation can be written in the form

Lo .
i = Fyb. (2.37)

Together with Eq. (2.32) it comgletely describes the dynamics of the quantum
constrained system in the gauge V.

In the Heisenberg representation, time evolution is governed by the quantum
counterparts of the hamiltonian equations of motion

i 4=[r4, #,], (2.38)

where I'? is a short-hand notation for all coordinates of the extended phase space
A, I'=(q, p; C, #; A, m; £, C). One obviously has

iha, B =0, #,] =0 (2.39)

Using standard procedures one can pass from the Heisenberg representation to
the path integral representation of the quantum dynamical system (see Refs.
[38,39]). The resulting path integral expressions for the S-matrix and the generating
functional for the Green functions are well defined and free of the difficulties
encountered in the heuristic approach to the path integral quantization.

Extended phase space .#,,, was introduced by Fradkin and Vilkovisky in Refs.
[30,31]. Therein an idea of quantization in .#,,, was applied to quantization of the
gravitational field (in particular, the correct path integral measure and Ward
identities were obtained). In a series of papers by Batalin, Fradkin, Fradkina and
Vilkovisky [31-34] a consistent quantization method for dynamical systems with
constraints (BFV quantization method) was first formulated in the hamiltonian
path integral representation. In particular, consistent quantization of relativistic
systems with bosonic first-class constraints (expressions (2.16)-(2.17) for (2, the
unitarizing hamiltonian #, (2.29), (2.24), the gauge fermion ¥ (2.28), and the
Fradkin—Vilkovisky theorem) was first obtained in Refs. [31,32] and further
developed in Refs. [33,34], where the nilpotency of {2 was taken as a basis for the
BFV quantization method. The Fradkin—Vilkovisky theorem states that physics
(S-matrix, amplitudes, etc.) is independent of the choice of a particular gauge, i.e.
that physical quantities are defined only on the cohomology classes of 2. Global
symmetry transformations with fermionic parameters leaving a gauge fixed action
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with ghosts invariant (BRST transformations) were discovered in the lagrangian
formulation of Yang—Mills theory by Bechi, Rouet and Stora [46] and Tyutin [47].
It was pointed out in Refs [33,34] that the nilpotent operator 2 introduced in
Refs. [31-34] generates BRST transformations in the hamiltonian formulation of
gauge theories. In Ref. [34], path integral quantization was formulated for dynami-
cal systems of the most general type — with an open algebra of first-class constrains
(structure coefficients depend on g and p), second-class constraints and both
Fermi and Bose degrees of freedom.

The BFV quantization method in the operator representation was developed by
Batalin and Fradkin in a series of papers [35-39]. The structure of extended phase
space in the Fock representation was studied by Kugo and Ojima [48] and
Nishijima [49], where the so-called quartet mechanism was introduced. The BFV
quantization method was generalized to the case of reducible first-class constraints
in Ref. [37]. A detailed survey of the operator BFV quantization is given in Refs.
[38,39]. Finally, operator quantization was generalized to the case of second-class
constraints in Refs. [25-28], where a general gauge-invariant BFF approach to
second-class constraints was formulated. A lagrangian BV path integral represen-
tation of the BFV quantization was formulated in a series of papers by Batalin and
Vilkovisky [50]. Equivalence of lagrangian and hamiltonian BFV quantization in
the path integral representation was demonstrated in Ref. [39].

3. Second-class constraints
3.1. Second-class constraints

Consider a symplectic manifold .# with non-degenerate symplectic structure o,
dw =0. In a generic coordinate system x*, =1, 2,...,2N, a dynamical system
with the hamiltonian H = H(x) is described by the hamiltonian equations of
motion

x”'=[x“, H];)B’ (31)

where Poisson brackets are defined by the inverse w*” of the symplectic form w,,,,
w,,"" = 8f, so that

[x#, x”]‘;B=w“"(x). (3.2)

The first step of the BFF procedure to quantize the system (3.1), (3.2) is to get
rid of the non-linear Poisson brackets (3.2). One first introduces a new set of
variables p,, p =1, 2,...,2N, and a new symplectic structure on the enlarged
phase space of both variables x and p,

[x*, p,]pp =81 (3.3)
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To reduce the number of physical degrees of freedom, one subjects the new
variables to the constraints

0 =pp__V =01 (3.4)
with such V, = V,(x) that
ap,V;_ v y._ pv(x) (35)
and
(60 0] 5 = - (36)
The symplectic potentia] V is defined up to an abelian gauge transformation
=V, +d,0. (3.7

Since the constraints are second-class we can introduce Dirac brackets

[x*, x"]p = 0**(x),

[x*, p,]p =8+ w3V, (3.8)
[p,, P, ), =8.V,0°%8,V,,

and the hamiltonian equations of motion are
i*=[x*, Hlp, P,=|[p.. H]y- (3.9)

This hamiltonian system with phase space variables x* and p, and second-class
constraints (3.4) is obviously equivalent to the original dynamlcal system (3.1) and
follows from the lagrangian action

§ = ["de[ £V, - H(x)]. (3.10)

Under the gauge transformation of the symplectic potential (3.7) the action
changes on the constant

§'=8+¢(x1) —e(x0)- (3.11)
3.2. Topological action and quantization condition

There is an important subtle point in this consideration. Although Eq. (3.5) can
be solved locally in each coordinate patch, there does not exist a global solution for
a one-form of symplectic potential V' unless w is exact. Consequently the action
(3.10) is well defined only locally (on the paths that entirely lic in a contractible
coordinate patch). However, in the Feynman path integral integration is performed
over all paths on .#, so we need a global definition for the action.

Consider an arbitrary closed path I' and a two-dimensional surface 3 bounded
by I', 33 =T. Let us define the action as follows:

Ss(T) = fzw - frdt H. (3.12)
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For this definition to be consistent, the Feynman phase factor exp[iS3(I")/#] must
be independent of the choice of 3, i.e. if 3’ is another surface bounded by I' and
§5(I') is the corresponding action, we must have

i
exp(—[Sz(F) -Ss(N]|=1, (3.13)
or, introducing the two-dimensional cycle 3" =3 — 37,
1
— Z. .14
Y E”(u S (3.14)

Since the integration is performed over all paths I', the integral of w/27#% over
any two-dimensional cycle must be integer, i.e. [w/2mh] € H*(.#, Z), and one
obtains a topological quantization condition of geometric (pre)quantization
[6,7,11,19].

3.3. Cech cohomology and Wu~Yang action

Let {#,} be a contractible open covering of .#, i.e. .#=U _&, and each
coordinate patch and every finite intersection &, ,N...na,, is diffeomorphic to
an open ball in R2Y, When o is not exact, on 1ntersect10ns &, N T, transitions
from one coordinate patch to the other change the symplectic potential according
to abelian gauge transformations

V.=V, +de., (3.15)

and there does not exist a global gauge, i.e. a set of local gauges fixing ¢, in (3.7)
in each coordinate patch &, such that ¢,, could be set to zero for all intersections
&, N &,. In other words, the set of gauge parameters {%g} cannot be represented
in the form ¢,z = ¢, — @, for any set {¢,}. The problem of the global definition of
the action functional when the symplectic potential does not exist as a one-form is
the same one one has trying to define the global action for a point particle moving
in the field of a Dirac magnetic monopole [51] (the electromagnetic interaction
term ¥4, and the field strength F,, are counterparts of our £V, and w,,).

Consider a path I" going from the point x, €&, to the point x; € &, through a
point X, €EC, NGy in the non-empty overlap &, N - Naively one could define
the action as (we will omit the topologically trivial term with the hamiltonian while
discussing the xV-term)

S(ry = [+ [*, (3.16)
x Xag

@

The problem is that this definition depends on the choice of x,5. The correct
definition was given by Wu and Yang in their work on Dirac magnetic monopoles
[52] (see also Refs. [53,54]),

Xag Xg
S(I) =L Ve = €ap(Xap) +f Vas (3.17)
3 xaB
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where ¢,4(x,,) is the value of the gauge parameter ¢,z (3.15) at the point x,g. It
is easy to see that this definition is independent of the choice of x 4.

Following Ref. [53], consider now a path I' going from x, to xg through a
triple overlap &, NG NI, and let the points x, €8,NI,, x,s €O, NI, and
Xopy €EC,NOFNO, lie on the path. With the help of the gauge transformations

Vo=Vs+do., V=V, +deg,, V,=V,+de,,, (3.18)
the Wu—Yang action

Fapy e
(D) = [ Vo= up(Hap) *+ [ Vo (3.19)

By

«

can be rewritten in the form [53]

Xay *v8 ol
S = [ Ve @uf(x) + [ V= 0r(xi) + [ Vi
o xlx'y

8

- [‘PaB(xaB'y) + ‘pB'y(xaB‘y) +¢-ya(xaﬁ'y)]‘ (320)
Furthermore, adding the three equations (3.18) together we obtain
d(@ap + Ppy + €ya) =0, (3.21)

i.e. the two-cocycle n,g, =@,z + ¢p, +¢,, is constant over the entire triple
overlap &, N @, N &,. The first five terms in the action (3.20) are just the Wu-Yang
prescriptions for going from &, to @, through &,. The entire action (3.20) is the
Wu-Yang prescription (3.19) for going from &, directly to &. Thus, the action is
ambiguous up to a constant n,s,. In order for the Feynman phase factor
expliS(I")/#] to be well defined, all n,z /27 must be integers. Thus we again
arrive at the topological quantization condition

1
5 (Papt Py + 0ya) €L, (3.22)

The closed two-form  is a de Rahm representative of the Cech cocycle
{naBy/th} € HX(#, 7), and the quantization conditions (3.14) and (3.22) are
equivalent.

3.4. Prequantum bundle and second-class constraints

The set {V,} of one-forms of symplectic potentials in the patches &, together
with the set of gauge parameters {(paﬂ} define a line bundle L over .# with
transition functions g,z = exp(—i¢,z/h), connection ¥ and the curvature , the
Kostant—Souriau prequantum bundle [6,7,11,19]. A section ¢ of L is represented
by the set {¢,} of local functions ¢, = ,(x) defined on &,, and on the intersec-
tions &, N &, one has

¥, =8.p¥p- (3.23)
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Obviously g;BI = g4, and the consistency condition (cocycle identity)
80p8py8ya=1 (3.24)

is ensured by the quantization condition (3.22) obtained as a consistency condition
for the path integral.

Under the substitution p, — —ihd,, our second-class constraints 8, =p, —V,
can be interpreted as covariant derivatives V,LV =3, —(i/h)V, acting on the sections

of L, and one has
i
vy, v/]=- P (3.25)

On the intersections we have (the indices a, 8, y labeling the coordinate patches
are not to be confused with the indices u, v,...)

VY =8ugVs 8ap> ' (3.26)
where V.V is a covariant differential on #,, V' =d — (i/#)V,, and
Vi, = 8ap( Y ¥is) (3.27)

as required. Inequivalent line bundles are classified by the cohomology class of the
two-form ¢,(L) = w/2h, the first Chern class of L. The Feynman phase factor
exp[iS(I')/h] with the Wu-Yang action S(I') defines parallel translations of
sections of L along I'.

Thus, we have found an operator representation for our constraints. However,
since the constraints are second-class and do not commute on the constraint
surface, we cannot interpret sections ¢ of the prequantum bundle L as wave
functions and enforce the quantum constraints V" = 0.

3.5. Quantization of second-class constraints (Dirac, conversion and Gupta—Bleuler
methods)

Generally, there are two ways to quantize systems with second-class constraints.
The original Dirac method [1-4] consists in finding an operator representation for
the Dirac brackets of canonical variables ¢ and p and solving the constraints
0(4, p)=0. We can enforce the constraints in the Dirac method since the
operators § and p are subject to the commutation relations dictated by the Dirac
brackets (not Poisson) and the constraints commute with respect to Dirac brackets.
However, the task of finding a direct operator representation of highly non-linear
Dirac brackets (Egs. (3.8) in the case in question) appears to be unsurmountable.
Moreover, even at the formal level there is a serious problem with the Jacobi
identities when the structure coefficients become operators.

The alternative way of quantizing systems with second-class constraints, the
BFF conversion method, was proposed by Batalin, Fradkin and Fradkina in Refs.
[25-28]. The BFF conversion essentially consists of two steps. First, one converts
second-class constraints into the first-class ones by introducing some extra gauge
degrees of freedom, Stuckelberg-type variables, and then quantizes the resulting
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system with first-class constraints according to the standard BFV quantization
method described in the previous section. In this paper will apply BFF conversion
to our dynamical system with the hamiltonian H and the second-class constraints
6, =p,—Vp.

Let us note that there is also a third approach to quantize second-class
constraints. This method is somewhat reminiscent of the Gupta—Bleuler quantiza-
tion. One selects a commuting subset of N constraints 0, i=1, 2,..., N, [0!., 0;1en
= 0, among the 2 N second-class constraints 6,, quantizes the canonical variables g
and p aAccording to the Poisson brackets and then enforces the quantum con-
straints §; on the physical states as if they were an independent system of first-class
constraints, forgetting about the other half 6;, i=N+1, N+2,..., 2N. Though in
some instances this approach may work, it generally can lead to a physically
incorrect quantum theory. There may be difficulties with the consistent separation
of second-class constraints into the effective first-class constraints 6; and effective
gauge conditions 8;. Even if such a separation does exist at the classical level,
quantum anomalies can destroy quantum theory constructed in this way. In
particular, achieving unitarity in the physical sector can be a problem. Moreover,
there is no way to describe the entire algebra of quantum observables in this
“on-the-mass-shell” approach. Only functions that commute with 6, are quantiz-
able (if [A, 6,]ps =0, A can be regarded as an observable of the system with
effective first-class constraints 6,).

3.6. Classification of topologically inequivalent second-class constraints and prequan-
tum bundles

Let us consider a question of how many topologically inequivalent definitions of
second-class constraints lead to the consistent definition of the path integral.
Equivalently, we are interested in the moduli space of line bundles with connection
and the curvature —iw/h. From the previous section it is obvious that topologi-
cally inequivalent situations are parametrized by the sets of U(1) gauge transfor-
mations {g,g} satisfying the cocycle condition (3.24) modulo trivial (exact) cocycles
of the form {g,g; 1} for some {g,}, i.e. by the elements of the first Cech
cohomology group H'(.#, U(1)). Using simple homotopy considerations this group
can also be represented as principal homogeneous space of the group of characters
of the fundamental group 7, of #,

H'(.#, U(1)) = Hom(m,;, U(1))/U(1). (3.28)

Indeed, consider two topologically inequivalent definitions §,(I") and S,(I") of the
Wu—Yang action which are based on two inequivalent line bundles L, and L, with
connections —iV,/h and —iV,/h with the same curvature —iw/h. Further,
consider the corresponding Feynman phase factors exp(iS;/#) and exp(iS,/h).
Then the quantity x,((I'D = exp{il S;(I") — S,(IN]/#} depends only on the homo-
gy dass Wlof e ath TLig W is 2 dharacter of the fundamental growp ;.

Thus, we see that inequivalent characters correspond to inequivalent line bundies
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and vice versa and, factoring out the overall U(1) factor, Hom(1r,, U(1)) /U(1) is a
sought after moduli space. (See Refs. [6,54] for more details.)

3.7. Symplectic connection

A torsion-free linear connection compatible with the symplectic structure should
satisfy the invariance condition Vyw =0 for any vector field X, or in local
coordinates

Vo,,=d0,- [ o,—[ 0, =0 (3.29)
In contrast with the riemannian geometry, this fixes I" not uniquely, but up to an
arbitrary totally symmetric tensor of the third rank. This arbitrariness can be fixed
if there are other geometric structures on .# (e.g. polarization, complex structure,
riemannian metric or group action) and the covariant derivative is required to be
compatible with them. For example, in the physically important case of Kahler
manifolds, the symplectic connection is fixed by the requirement of compatibility

with the complex structure J = (J;,), J 2= — 1. The compatibility condition
V72 =0 (3.30)

in the complex coordinates x* — (2%, zP), a, E =1,..., N, requires that I’ o8 and
T, 0-:75 be the only non-zero components of I'7, (see e.g. Ref. [55]) and thus fixes the
arbitrariness. In effect, it reduces the holonomy group U(N)c Sp(2N; R)C
GL(2N; R).

The curvature tensor of the linear symplectic connection

R 3,15 —8,I7, + [5IA —TaTA (3.31)

‘7_
pvp pvp viup

has an important symmetry property,
R, ‘0" =R, "0, (3.32)

uvp uvp
and satisfies the Bianchi identities (that follow from the symmetry of the connec-
tion, I'f, =T, JL)

R,’+R,, +R,, =0 (3.33)
In the complex case, the symplectic curvature (3.31) coincides with the Riemann

tensor of the Kihler metric, and the only non-zero components are R_z 2, R_z°

5 F aBy » apy »
Rzg, and Rggy'.

4. Classical BFF conversion
4.1. First-class constraints and classical observables

To convert the second-class constraints 6, into the first-class ones, let us
introduce additional variables ¢,, a =1, 2,...,2N, with the Poisson brackets

[d’a’ ¢b]PB = _Aab’ (41)
where A,, = —A,, is a flat symplectic metric with the inverse A%®, A, A% = §¢.
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Following Ref. [27] we are looking for abelian first-class constraints in the form
Z.=p.— W%, ¢), (4.2)
[F0> Z2]os =0 (4.3)

with the initial conditions

‘7ul¢=0=0u’ or W, lo=0=V,, (44)
where V,, is the symplectic potential.

Introducing the notation (3; :=3/d¢,)

R, =W, — W, — W, A 3V, (4.5)
abelian Poisson bracket relations (4.3) can be regarded as zero-curvature equations
for W, = W,(x, ¢),

#,,=0, (4.6)
with the initial conditions (4.4).

Let 4 =A(x) be a classical observable of the original dynamical system on .#.

Then the corresponding observable & =«(x, ¢) of the converted system with
first-class constraints (4.2) must commute with 7,

[Z"M]PB=O’ (4.7)
i.e. satisfy the differential equations

9,94 =0, (4.8)
with the initial conditions

A (x, §)lp-0=A(x), (4.9)
where we have introduced the notation

D, =T |ep =2 — g W, A b5 (4.10)

[

We will call the function & of x and ¢ satisfying (4.8) and (4.9) the BFF
extension of the original classical observable A.

4.2. Symp(R?N) gauge theory

The above construction admits a natural physical interpretation which is already
obvious from our notations. Consider a group Symp(R%") of symplectic diffeomor-
phisms (symplectomorphisms, canonical transformations of the linear symplectic
space R2V, A =A%d¢, A dg,) with the Lie algebra Ham(R*") of hamiltonian
vector fields on R?Y, i.e. vector fields of the form X =[f, lpp= —d; anbag for
some hamiltonian function f=jf(¢). Then [W(x, ¢),* lpp is a Ham(R*")-valued
gauge field acting on the functions & =(x, @), 2, is the corresponding covari-
ant derivative and [#,,,1=[2,, 9,] is the curvature. The zero-curvature equa-
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tions (4.6) reduce W, to a pure gauge, and (4.8) singles out gauge-invariant
observables

8t =4[ T, H =0, (4.11)
where &% = §£#(t) are arbitrary time-dependent parameters. The zero-curvature
equations (4.6) can then be regarded as Frobenius consistency conditions for (4.8),

(4.11).
Egs. (4.6), (4.8) are obviously invariant under Symp(R?") gauge transformations

W, =T e =0, — W, A4ke, (4.12a)
o = _[6, M]PB’ (4.12b)

with arbitrary gauge parameters € = e(x, ¢). Jacobi identities for three first-class
constraints reduce to the Bianchi identities

[, (7., 7,]] +ovcle = —2,£,,,=0. (4.13)

Introducing an extended hamiltonian /#, = # + A*J, for our system with first-class
constraints 7, 9, %), = 0, the hamiltonian equations of motion read as follows:

it = [x¥, #]es = 2%, (4.14a)
Pu= [pu, Z'\]PB =0, + AW, (4.14b)
bo=[¢a Zion = — Ao # + XA LW, (4.14c)
They are invariant under the gauge transformations generated by the constraints
dxk = —¢"[7,, x*]pg =€, (4.15a)
8p, = —&[ s Pu]pg = €W, (4.15b)
8¢, = —&17,, ¢ulop =AW, (4.15¢)

with arbitrary time-dependent gauge parameters £* = £#(¢). It is easy to see that
the system (4.15) with constraints .7, = 0 and the gauge-invariant hamiltonian #,
9,# =0, reduces to the original system (3.1) in the “unitary gauge” ¢, = 0.

Let us now establish a relation between diffeomorphisms on .# and
Symp(R2")-gauge transformations (4.12). First, consider a diffeomorphism

Sxk =L+ (4.16)

with an arbitrary parameters {* = {*(x). Gauge fields W, and observables &
transform according to

SW, = LW, +3,0°W,, (4.17a)
8/ = ("0 . (4.17b)
Taking into account (4.6) and (4.8), we can rewrite this diffcomorphism as follows:
5W, =2,(L°W,), (4.18a)

o = _{V[I'Vw M]PB- (4-18b)
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Now, these are precisely Symp(R?")-gauge transformations (4.12) with the gauge
parameter

e(x, d)=L"()W,(x, ¢). (4.19)
Thus, there is an embedding of the general coordinate transformations group
Diff(#) into the Symp(R?*")-gauge group.

4.3. Lagrangian formulation

The hamiltonian theory with first-class constraints described above has a natural
lagrangian formulation. Indeed, consider the action functional

§ = [de]3d, A%, + W (x, 8) = 7 (x, $)] (4.20)
which leads to the lagrangian equations of motion
éS .
Fyie X% W, — 9, % — ¢,0°W, =0, (4.21a)
88 ab { a Y]
o, AP, + 027 —+W, = 0. (4.21b)

One notes that the master equations (4.6) and (4.8) are equivalent to the Noether
identities

— L EW, Ay = AR, —D,# =0, (4.22)

and the corresponding gauge transformations leaving the action invariant are given
by
dxt = Ex, (4.23a)
B, =05W, A", (4.23b)

with an arbitrary time-dependent parameter & = £#(z).

It is now obvious that the action (4.20) indeed leads to the desired hamiltonian
formulation with first class constraints and is physically equivalent to the original
action in the “unitary gauge” ¢, = 0.

4.4. Perturbative expansion for first-class constraints

To solve the differential equations (4.6), (4.3), let us expand our gauge field W,
in the Taylor series in ¢, (see Appendix A for our tensor notations):

W, = Y WiOT, ., (4.24)
k=0
where the totally symmetric monomials

1 _
Tory = k—!qﬁal g, k=1,2,...,%, Tg=1 (4.25)
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form a basis in the Lie algebra PB(R?") of smooth functions on R?¥ with respect
to the Poisson bracket (4.1). Then the zero-curvature equations

Z .9?“(")Ta(k) 0 (4.26)
reduce to a series of recurrent relations

k!
.%:f,k)=3#W;"(k)—3VW:(k)— Z 'W"(p)bA W“(q)"' 0, (4.27)
ptq= kp q:

with the initial condition

WO =y, (4.28)
Gauge transformations (4.12a) and Bianchi identities take the form
k!
SWID =80 — Y ——WHPEA, e, (4.29a)
pt+q=k plq!
k!
39,20 — Y —'W“(P)bA ZXD° + cycle = 0. (4.29b)
prq=k P lq!

4.5. Symplectic gravity

Note that polynomials of at most second order form a subalgebra in PB(R?M)
which is isomorphic to the semidirect sum sp(2ZN; R)®H,, of symplectic and
Heisenberg Lie algebras:

My=—30.05, Pa=da =1, (4.30a)
[Muy, Moylpp = 3(Apc Moy + Ay Myy+ AgyMy + A M), (4.30b)
[Meays P.lop=7(ApcPo + AscPp), (4.30c)
[P Plep=—An®. [, Myles=1[P, ,€]=0. (4.30d)

This algebra serves as a counterpart of the euclidean (Poincaré) algebra for
symplectic geometry; symplectic generators M, substituting the (Lorentz) rotation
generators and P, being symplectic translations. More precisely, it is the Lie
algebra isp(2N; R) of hamiltonian vector fields with the hamiltonian functions
(4.30a),

[ ab? ]PB = %(‘baAbcai + (bbAaca;) [Pa" ]PB = Aabab’ (431)
that generates the group ISp(2N; R) of symplectic affine transformations of
(R2M, A), rather than the algebra (4.30) itself. The sp(2N; RY®H,, is a central
extension of isp(2N; R) by the constant functions. Since constants commute with

everything, there is no hamiltonian vector field associated to @. However, it is the
central extension sp(2N; R)®H,,, that is important in quantum mechanics.
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Now let us consider an sp(2N; R)®H, \-valued gauge field
wrel=y &+h,P,+ APM,,,. (4.32)

Here A% = A" is a symplectic connection (counterpart of the Lorentz connection),
hy is a symplectic vielbein and V, is an abelian gauge field associated to the
central element %.

Curvature components read as follows:

F, =08V, =8V, —hiA,h, (4.332)
RE, =3, 3,k + AL Apchs = APA L, (4.33b)
Rffl = auAfzb - avAZb + AZCAchib - Afchchib' (4.33¢)

Choosing ¥, to be the symplectic potential (3.5) for the curved symplectic metric
w,, on # and imposing a constraint

F,=0, (4.34)

my
h;, indeed becomes the symplectic vielbein
w/.w =hf¢Aabh€' (435)

Then A;’f’ is the symplectic connection on .#. Symplectic covariant derivatives of a
tensor with tangent indexes are defined by

DPA% k=0 AN %+ Af}bAbcAC“Z“-“k + ..., (4.36)
or for a totally symmetric tensor
Dj%“(k) = 6#A“(") + kAbeAbcA”(k‘l). (4.37)

Vanishing of the total covariant derivative of the vielbein with respect to both
the lower curved index and upper tangent index gives the relation between
symplectic and linear connections,

a.h; + AZbAbchﬁ —I*?he=0. (4.38)

wr'tp

If the linear torsion I'f, —If, is equal to zero, the symplectic torsion Ry, also
vanishes

R®, = DPhs — DPh% = hé(Tf, —T2,) =0. (4.39)

Similar to the Lorentz connection in gravity that can be found from the zero-tor-
sion condition, A‘:f’ can also be found from Eq. (4.39). However, in the symplectic
case it is fixed by (4.39) only up to the totally symmetric tensor €°%¢ that can be
added to the connection,

ALY = A% + hEA e, (4.40)

When there is an additional geometric structure on .# (complex structure, polar-
ization, riemannian metric or group action), this arbitrariness can be fixed globally
by the requirement of invariance of the corresponding structure, as we discussed in
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the previous section. For example, if there is a complex structure compatible with
the connection, the only non-trivial components of the connection are those
associated with the subgroup U(N) c Sp(2N; R).

Similar to the situation with the Lorentz connection in gravity (see Ref. [56]),
relation (4.38) leads to the following relation between the linear and symplectic
curvatures:

R (4) =R, (I')h2h2A®, (4.41)

uvp
where A% is an inverse vielbein,
hih, =8, hihh=35;. (4.42)
Symplectic curvature satisfies the Bianchi identities
thbcR"jf, + hﬁAbcR,‘f; + hf,’AbcR;jfL =0, (4.43)
which follow from the zero-torsion condition (4.39).

We will also often use the following relation between the Yang—Mills symplectic
and linear covariant derivatives D;? and V, (see (4.37), (4.38)):

DPA™R) = DP(ha .. ha A"®) = h .. 2V, AP, (4.44)

4.6. Higher spin fields
Now we are ready to return to the zero-curvature equations (4.27). The first
step is kK =0:
RO =9V, -3V, - WiA,W}P=0, (4.45)

ie. W2=h{ is a symplectic vielbein (see (4.33a), (4.35)). Next, for k=1, the
equations take the form of the zero-torsion conditions (4.39):

o, =0,hs —8,he — (WPAy b — WiPA, b)) = 0, (4.46)
and, consequently, W@ = —A%®, Further, for k =2 we have
RED = —RID — [hﬁAbcI'mec —(pe V)] =0, (4.47)

where R2? is a sp(2N; R) curvature tensor (4.33c). The field W,*® is determined
by this relation up to an arbitrary totally symmetric tensor of the fourth rank e“®
(gauge parameter). To fix this gauge arbitrariness one can choose the gauge fixing
condition

ATREWED =0, Qe =0, (4.48)
Then, using Bianchi identities (4.43), one obtains (see Appendix B)
Wi = JAPh; RED = — JheD(w”0?°R,,, .0 ). (4.49)

Thus, the “symplectic spin-three” gauge field is expressed in terms of the symplec-
tic curvature up to a pure gauge. Continuing this recurrent procedure, one can
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express all “higher spin” fields in terms of symplectic curvature and its covariant

derivatives. W:(k) is found from Eg. (4.27) up to an arbitrary totally symmetric

tensor €“**YD gauge parameter of the gauge transformations (4.29a), and the
gauge can be uniquely fixed by the generalization of (4.48),

A“”h;,‘W:‘“ =0. (4.50)
To summarize, the sought after first-class constraints have the following form:
‘7;1. =p;4, - I/p, - hz¢a + %Azb¢a¢b - %Aabthz(VZ)(bald)aztﬁa; o (4'51)

4.7, Perturbative solution for classical observables

Our next task is to solve Egs. (4.8) for classical observables & =#(x, ¢).
Expanding . in the powers of ¢,

«©

A(x, p) = > Ma(k)Ta(k)! (4.52)
k=0

one reduces them to the following set of recurrent relations:

k!
a(k a(p)b a(q)c —
B“M k) — p+§=k;!q—!u/#(p) Abc% (a) —0, (453)

subject to the initial condition

O =4, ' (4.54)
The first equation with k=0,
3,A—hbA, =0, (4.55)
gives
o/ =A"h}3, A. (4.56)
Next, for k =1 one has
Drsr® — thbCM“C =0 (4.57)
and, using Eqgs. (4.44) and the consistency condition
A‘bh‘,‘,‘Djp.w’ 4= A“”h;,‘Dj"M ¢ (4.58)
which follows from the zero-torsion condition (4.39), one finds
0D = AHDDp g(%)V#(z)A . (4.59)
Further, the equation for k = 2,
DPst*® — b Ay 5t *PF — WP, ¢ =0, (4.60)
has a unique solution (see (B.2), (B.3))
&0 = A“(3)”’(3)h;;(‘33))(7u(3)/1 — %R,,W"w(m w""apA). (4.61)
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This recurrent procedure can be continued to find higher order terms. As a
result, for every classical observable 4 one obtains a unique BFF-extension 27,

A=A+ P A+ ;PP A

MHik2

+3PMPRPHY, A~ 4R, 0, 0""8,A)+ ..., (4.62a)

HiHt2H3 VR Ol

where we have introduced the notation
o+ = d)aA“”h’b‘. (4.62b)

In particular, the BFF-extension 2°* of the phase space coordinates themselves
has a normal-coordinate-type expansion

FH=xt+ P+ 3PP

viva
Lpvigpr2pvsf — I A poo__ 1 o i
+2 @M@ 9" (=8, Lk, + 200, T — 4R, "0, 0% ) + ...

.(4.63)

Then the BFF-extension #°* of any other classical observable is a function
Fx, §)=AZ(x, $)).

It is easy to see that the flat Poisson bracket (4.1) of two BFF-extensions %/ and
% of A and B indeed coincide with the BFF-extension of the curved Poisson
bracket (3.2) of the original observables 4 and B,

([, Ble)lg~0= —F°A,, B =3,40",B. (4.64)
Combining the results (4.51) and (4.62), the lagrangian (4.20) takes the form
F= 36N 0" + 24V, — H(x) + ¢,(hax* — A*°hid, H )
— 30ty (M54 + AOPORERY o H ) + Ly b, | FRIDH#HY A

— Aa(3),b(3)(V#(3) H— % R

W@ P, H)| + ... . (4.65)

vpp

4.8. Pure gauge solution and parallel transport of observables

Consider a coordinate neighborhood # of the point x; € # and a path I" going
from x, to another point x; €, and let W, = W (x, ¢) be a solution(4.51) of the
zero-curvature equations. Then parallel transport of a classical observable & from
X, to x, along the path I" is defined by the parallel translation operator

G(x;, xo) =P CXD(—fxl[W, ‘]PB)

*o

P exp(f"dtxﬂa;%(x(t), ¢)Aab8£), (4.66a)
fo

[G(xy, xo)]_1=G(x0, xq)- (4.66b)
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Due to flatness of W it satisfies the equation
a -1
ad,WuAa,,ag =9,G(x, x)[G(x, x0)] (4.67)

i.e. it provides a pure gauge solution to the zero-curvature equations.
Then the master equations for classical observables have a general solution

M(x’ ¢)=G(x’ xO)MO(d’)’ (4‘68)

with the initial condition &g(¢) =%(x,, $). Thus it is enough to know the value of
o at the initial point x, to be able to reconstruct the function 2(x, ¢) on the
entire coordinate neighborhood &. If we change the initial point x, to xj, the
initial condition in (4.68) changes to &)= G(x}, xo)¥,, and we again have
& (x, §) = G(x, xp)(P).

4.9. Flat phase space

Let us now consider the simplest example, the flat phase space # = R2N with
canonical coordinates x“ and canonical Poisson brackets

[x°, x®]ps = A”. (4.69)

Introducing p, and ¢, and a new Poisson bracket on the enlarged 6 N-dimensional
space of x, p and ¢,

[x* Polen= 3% (4.70a)

(o dplen= —Aus (4.70b)
first-class constraints take the form

Fo=pa— Vot ) =0, V,=34,%" (4.71)
The BFF-extension & of the original observable A satisfies the equation

o7 0

PP A“bgqb_b =0, (4.72)
and an obvious solution is given by

F=x°+ A%, (4.73a)

> a*A
A(x, ) =H(Z(x,¢)) = kgo ;!_(b“l"'d’ak/‘a(k)’b(k)m' (4.73b)

Selecting the path x%(¢) = &x® going from the coordinate origin x%(0) = 0 to some
point x%(1) =x*, the parallel transport operator (4.66) takes the form

G(x,0) = exp(x“AabEZ’—) ' (4.74)
b
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and
#(x, b) = G(x,0)¥y (), (4.75)

i.e. it acts as a Symp(R?")-gauge transformation (4.12b) with the gauge parameter
e=x%,.

4.10. Fiber bundle interpretation

Consider a bundle & over .# with fibers F = C*(R?") and the structure group
G = Symp(R?). The first-class constraints 7, define a flat connection on &,

X(W) =W, leg= —0WA,0;, W=dx‘W,, (4.76)

and classical observables commuting with the constraints are constant sections of
&. Thus, to every classical observable 4 on .#, the BFF conversion procedure
associates a covariantly constant section . of the Symp(R2¥)-bundle & with the
flat connection defined by the first-class constraints.

Let {#,} be a contractible open covering of .#, and {X(W,)} and {&,} are
trivializations of the flat connection X(W) and a covariantly constant section .,
ie. W,=dx*W,  and &, are solutions of Eqgs. (4.6) and (4.8) on &, that can be
represented in the pure gauge form

X(W,) = —dG,G: !, (4.77)
Ao =Gy (4.78)
with Symp(R?")-gauge transformations
Go(%y, Xo) =P exp( - [ x¢( W,,)) (4.792)
X0,a

and initial conditions
MO,G =Ma(xo’a, ¢). (4.79b)

Here we have selected the origins x, , € &, of the coordinate patches &, (vertices
of the triangulation of .# associated to the covering {#,}), and x, are generic
points of &@,.

On the intersections &, N &, we have Symp(R?")-gauge transformations G,z =
Gop(X,4p)s X o5 € G, N, such that

Ga_Bl = Gﬂa’ Gaa = ]]- ’ (480)
Ay =Gy, (4.81a)
X(W,) =Gy X(Wp)Gyy — dG,5 Goy- (4.81b)

On non-empty triple overlaps &, N @; N &, they must satisfy the cocycle identities
G,5Gp,G,0 = 1 (4.82)

that ensure the consistency of (4.81).
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Substituting pure gauge solutions (4.77) and (4.78) in Egs. (4.81), we find that
the combinations [G,(x g, %000 G X 15)Gp(X o Xop) are constant over the
entire overlap &, N &g,

d(G;'G.Gs) = 0. (4.83)
As a result, general solution for G,z can be written in the form
G.p= G,Gy.pGs ' (4.84)

where the initial conditions G, are independent of x.

Thus we have reduced the problem of constructing the Symp(R?¥)-bundle & to
finding a set {G ,g} of canonical transformations of the flat phase space, G .5 €
Symp(R2"), associated to the covering {#.} and satisfying the cocycle identities

Go,0G 0,8y = Go,ay- (4.85)

Substituting the solutions (4.78) for &/, and ¥ in Egs. (4.81) and taking into
account (4.84), one sees that the canonical transformations Gy.p relate initial
conditions &, and 4 for coordinate patches @, and &, that have non-empty
overlaps &, N &g,

Fgo=GCoop¥op- (4.86)

Inequivalent bundles correspond to inequivalent solutions of the cocycle ident-
ties (4.85). Two solutions {G g} and {Gj g} are said to be equivalent if there
exists a set of gauge transformations {Gy,}, Goo € Symp(R?¥), such that G .5 =
G,4Go.4pGop- From (4.78), (4.79), (4.84) and (4.86) it can be easily deduced that
{Gg,a} are gauge transformations defining parallel transports from the initial
triangulation vertices x;, t0 some new vertices xj, where the initial conditions
&, are taken. In particular, trivial cocycles are those that can be represented in
the form {G, G 3} for some {Gg ,}. Then all G, can be reduced to the identity
transformations, and the corresponding bundle is just a direct product .#X
C=(R2¥). A set of gauge equivalence classes of {G,g} satisfying the cocycle
identities is called the first Cech cohomology with coefficients in Symp(R*"),
H!(.#, Symp(R?M)). It is a non-abelian generalization of the Cech cohomology
H(.#, U(1)), where instead of U(1) we now have the entire infinite-dimensional
group of canonical transformations of R?".

On the other hand, the Gy g subject to the cocycle identities generate a
representation of the fundamental group 7, of .# by canonical transformations.
(It can be easily seen by considering a triangulation of .#, i.c. a polyhedron with
the vertices x,, and edges [,z = [xgq> Xop] associated to the covering {#,}, and
noting that G .5 = [G.(x 4 X0 ' Gp(X4p)Gp(Xug, x4,5) define parallel trans-
ports along the edges /. Then every loop on .# is represented by the homotopi-
cally equivalent edge loop on the polyhedron and, further, by the -associated
product of GO,aﬁ') Consequently, topologically inequivalent Symp(R?")-bundles
with a flat connection are parametrized by the conjugacy classes of such represen-
tations T, — Symp(R?¥), i.e. the moduli space of topologically inequivalent classi-
cal BFF conversions coincides with Hom(ar, Symp(R2¥))/ Symp(R*"). It is be-
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yond the scope of the present paper to investigate this general setting. Instead, we
will consider an important particular case when the structure group can be
reduced to the subgroup of linear canonical transformations Sp(2N; R) C
Symp(R?"). That is, we assume that there exists such a set {Goots Goo €
Symp(R>"), that our G, can be represented in the form

Goap=GoaFoasGips FoupESP(2N; R), (4.87)

ie. all the transition operators G,,; can be reduced to the linear canonical
transformations F, ,,. They must satisfy reduced cocycle identities,

FO,aﬂFO,ﬁy = F(],a'y' (488)

The linear canonical transformations F, ,, are defined by quadratic hamilto-
nian functions f,g,

Fop = eXp(— 35 fop Apdh), (4.892)

fup = 2(Sap)y A b (4.89b)
and Egs. (4.86) for & , = G, %, , reduce to

&0 () =F0,aﬁM('],ﬁ =M(’],ﬁ(sa[3¢)! (4.90)
where

b b b

(SaB¢)a = (SaB)ad)b’ (Saﬁ)a = (exp Sdﬂ)g (4'91)
are symplectic 2N X 2 N-matrices that must satisfy the matrix cocycle identities

SapSpy = Say (4.92)

in order for (4.88) to be satisfied. Inequivalent solutions of (4.92) define inequiva-
lent symplectic vector bundles over .#. It corresponds to topologically inequivalent
global choices of the vielbein and the symplectic connection (see Refs. [55,57] for
the geometry of fiber bundles).

5. Quantization of BFF-converted system I: Weyl symbols
5.1. Quantization of first-class constraints

Converted system with the first-class constraints 7, = p,— W, can now be

quantized according to the standard BFV quantization procedure outlined in
Section 2. x*, p, and ¢, now become operators,

[£#, B,] =inst, (5.1a)

[$a9 (ﬁb] = —ihA,, (Slb)
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and they are supplemented with anticommuting ghosts and lagrangian multipliers
and their momenta,

{¢x, P} = inst, (5.22)

[A%, #,] = s, (5.2b)

(9,8} =inst. (5.2¢)
The quantum BFV-BRST operator has a standard form:

O=0_.+ D (5.3a)

Q. =CrF., O, =FP*%,, (5.3b)
and the operators z are to be found from the nilpotency condition

3?2 =0, (54)
or, equivalently,

[.. 5] =o. (5.5)

Let us introduce Weyl symbols ¢, of the operators Ad;a. A cgmposition of two
Weyl (symmetric) symbols & and & of operators & and & is given by the
Weyl-Moyal multiplication formula

of + B =t oxp—3ihd3 4,0 %, (5.6)
and the commutator is given by the sin-bracket,
[, B\ = —2ist sin(§h¢{gAab5§)g. (5.7)

Symbols & =&(¢p) with the composition law (5.6) form an associative non-com-
mutative Weyl algebra 7y, a quantization of the algebra of smooth functions
C=(R?N). The group of its inner automorphisms Aut(%#7) is 2 quantization of the
group of canonical transformations Symp(R?"). Its Lie algebra Der(#, ) of inner
derivations of %, , i.e. the algebra of operators of the form [ %, - ], is isomorphic
to the factor-algebra [#, 1/ {1} of the commutator version of #,y by its center
spanned by the unity. It is a quantization of the Lie algebra of hamiltonian vector
fields, Ham(R*").

Weyl quantization of the converted system is obtained by substituting the
commutative multiplication of functions and Poisson brackets with the *-product
and sin-brackets. So the quantum version (5.5) of the zero-curvature equations
takes the form B

1
X, v =a;LWv_aqu. + le_l_[Wu’ m] * =0’ (5'8)

1%
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or in components

k) — k k - ne1,4\2n
FIP =9 WE —a Wik — 3 (—1)"(3h)
n=0
k! " R
X Z —Wa(p) (2n+1)Ab Wa(q)c( n+1)
(2n+1),cCn+1)
pia—k P! I9!'(2n + 1)!

=0. (5.9)

For the sake of simplicity in this section we denote Weyl symbols W, #,, and &
of quantum gauge fields W , curvature & and observables & by the same letters

as their classical counterparts. Thereafter, when dealing with the classical quanti-
0 O
ties we will use (0) to indicate that the quantity is independent of #, e.g. W#, &,

etc.
Quantum zero-curvature equations are invariant under the quantum gauge
transformations

oW, =4 e+—-[ €|, €=e(x,d), (5.10)
and the Bianchi identities are given by
3, R,y + —[ s Boy| 5 +cycle =0. (5.11)

To fix the gauge arbitrariness one can choose the gauge (4.50) where Wu"(k) are
now A-dependent coefficients of the Weyl symbol rather than classical quantities.

Master equations (5.9) can be solved perturbatively expanding in the powers
of A,

© (n)
— k _ (k)
W= ¥ WiOTy,, WO Z W W (5.12)
k=0 . n=0
()]
where W are classical gauge fields of the previous section.
As a result one gets the following recurrent relations:

o ("")auc) m) &)
R =0, Wi WwiP— Y 8(p+q-k)s(2n+t+s—m)
n,t,s,p,q
n
(1) k! (S)a(p)b(2n+1)A (I,%}a(q)c(2n+l) 0
4"p|q|(2n + 1)| M bR2u+1,cn+1) ’

(5.13)

where m, k=0,1,2,...,0, 8(n)==0 (1) for n# 0 (n = 0).

(n)
Quantum corrections Wz(k), n > 0, can now be found recurrently. First, we note

that all quantum corrections of odd orders vanish in the gauge (4.50). (Since W*®



600 E.S. Fradkin, V.Ya. Linetsky / Nuclear Physics B431 (1 994) 569621

are now coefficients of the Weyl symbol W, and contain all quantum corrections,

n)
Eq. (4.50) implies that Aty Wz(k) —0forall n=0,1,2,....) It follows from the
fact that there are only odd powers of # in the decomposition of the sin-bracket
and the initial condition

Wp.(xy 4)9 h)l¢=0=Vp.7 (514)
which is equivalent to (4.3) together with

(n) o

we® =0, n>0. (5.15)

Thus, in the Weyl ordering, first non-trivial quantum corrections are of second
order. In particular, for k=0 and m = 2 one obtains the equation for a second-
order quantum correction to the vielbein

(Z)b (2)a b X () o) ) ¥3)
hi AW, + WoAhy — 2 WL A a3y b0 W, =0, (5.16)
or

@) a L 4 ) 3 ()] 3

W” = - EA“ hd W;L Ab(3),c(3) Wv . (5.17)

Substituting (4.49) in the above equation, one finds (see Appendix B for
calculations)

W = — 1A%y 5.18
" 2 b v ( . a)
where

)

w nv = %(RMpI\ERva'SAwPU + 2RMAPERV50'AwpU)7 (518b)

and R,,,” is the curvature tensor (3.3D.
To summarize, we have found all the terms in the quantum first-class con-
straints with combined orders in ¢ and # not higher than three:

AA

i L L (Z)a » ror (O)a cp
—g, =9, - —f;[VM + (h;; + ﬁZWM)dJ,, — 1A%, by + %W“” R J N

h
(5.19)
Continuing this recurrent procedure one can express all quantum corrections to

symplectic higher spin fields in terms of the curvature (3.31) and its covariant
derivatives.

5.2. Algebra of quantum observables
Our next task is to describe the algebra of quantum observables. We have

converted our original system on .# into the physically equivalent system with
first-class constraints. Given a classical observable A on .#, the corresponding
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quantum observable is now described by the quantum observable of the system
with first-class constraints, i.e. it is a BFV-BRST cohomology class with a
representative (2.27) in the gauge V.

Since the constraints are abelian and, consequently, &/, is independent of
ghosts, Eq. (2.25) reduces to the master equation for Weyl symbols of classical
observables,

= %[y Srin] + =0t — [m, Lia] 2 =0, (5.20)
and &/ =,.(x, ) is subject to the initial condition (in the Weyl ordering)
Hginlgo=A. (5.21)
To solve Egs. (5.20), let us expand &, in the power series in ¢ and %,
o = f‘, F T, o, o ® = Z w0, (5.22)
k=0 n=0
The initial condition (5.21) reads as follows:

()} 0 (n) o
& O=4 and ¥*@=0, n>0. (5.23)

Then Egs. (5.20) reduce to the following recurrent relations:
(m) X (m) k
DP o O —pb A~ Y S(p+a—k)s(2n+t+s—m)
n,s,t,p,q

n
(_1) k! ()a(p)b(2n+1)A ;{
'(2’1 + 1)' b2n+1),e(2rn+1)

A@e@rtD _ (5.24)

These relations allow us to find quantum corrections to the classical BFF-exten-
sion (4.62). We will call corresponding operators and their symbols quantum
BFF-extensions. First, we note that all quantum corrections of odd orders vanish
identically:

(m)
=0 foralln=1,3,. (5.25)

and the first non-trivial corrections are of second order. In particular, substituting
the solutions (4.49) and (5.18) in the equation with m =2 and k =0,

@, @ o 0. ),
heA st "+ WA ,° —24W Aa(3),,(3)y ) =0, (5.26)

we find a second-order quantum correction (see Appendix B for calculations),

@
7= —A“bh”(ﬁR *0”w Y,

wro p(3)

5 @ vo
A+zo,,o BPA). (5.27)
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To summarize, we have found all the terms in the expansion of the symmetri-
cally ordered BFF-extended quantum observable with combined orders in ¢ and A
not higher than three:

(O)a 2(2)11 n I(O)ab" T 1(0)abc" '
M=A+(M Py )¢a+5y BBy + L ThByet (5.28)

This recurrent procedure can be continued to find higher order terms. As a result,
for every classical observable A4 on the initial phase space, the quantum conversion
procedure provides an effective means to construct the corresponding quantum
observable & on the extended phase space. The Weyl symbol & is given by

o (x, §) = QA(X), (5.29)
where a quantum conversion operator Q has the following structure:
= 1
Q=1+ L 7a 92"
k=17
k ad k (m) I
Q0 = (—1)* s T, T ™ Q UiV (5.30)

m=01I=1
(m) .

where coefficients Q(m, k, 1) (shorthand for Q ;((,2)) are functions of the curva-
ture tensor and its covariant derivatives

Q(2n+1,k,1) =0, forall k and /, (5.31)

o@n, k,)=Y¥ X 0,y RP(VRY" . (V*R)™ (5:32)

k=0 p1,---» P

If we introduce scale dimensions according to the rules

[R]= -2, [V]=-1, [#]=2, [¢]=1, (533)

then Q should be dimensionless, [@]= 0, and the summation in (5.32) is restricted
to those {p,} satisfying the condition

2pg+ (2p + 1)+ (2py+ )+ =dn k=L (5.34)

If H= H(x) is the initial hamiltonian, the time evolution of quantum observ-
ables &y is governed by the Heisenberg equation

0,5y = | F ). (5.35)

The simplest gauge choice is a unitary gauge

A

$,=0, ¥=C\+ $,hi0"Z,. (5.36)

5.3. Star product and deformation quantization from the BFV quantization -

In the previous section we described quantum observables on .# as BFV-BRST
cohomology classes calculated for the system subject to first-class constraints



E.S. Fradkin, V.Ya. Linetsky / Nuclear Physics B431 (1994) 569621 603

constructed via the BFF conversion procedure. Here we will show how an asymp-
totic expansion of the Weyl-Moyal star product formula for functions on an
arbitrary symplectic manifold with connection and curvature, which constitutes a
basis for deformation quantization of Refs. [21-24], can be naturally derived in this
approach.

Consider two functions 4 =A(x) and B=B(x) on .#, and let & =¥(x, ¢)
and & =%(x, ¢) be the Weyl symbols of their quantum BFF-extensions. Then an
associative and non-commutative * -product on .# is naturally defined by

AxpB=(H * B)|y-0. (5.37)

Substituting expressions (5.29) for & and %, calculating the Weyl-Moyal multipli-
cation and setting ¢, =0 (fixing a gauge), we finally arrive at the asymptotic
expansion (see Appendix B for calculations)

A+ B=AB + 3ihi, A **3,B — §h*V,, Aw* PV, B
~ &L A POZ, B+ .., (5.38)
where the operators .& are defined by

Zuo= Ve ™ Rpu02,0°7%, . (5.39)

P,

One sees that the well-known Weyl-Moyal star product for flat connections,
AxB= Z (Zlh) ’ ;L(n)Aw#(n)’V(n)Vu(n)B’ (540)

is modified to take into account curvature effects (in the notation * ., I' stands for
the connection I').
The * -product (5.38) satisfies the correspondence principles

;in})(A * rB) =AB, (5.41a)

1
'!in}](E[A, B]*) =[4, Bleg=3,4 0", B, (5.41b)

i.e. it defines a quantum deformation of the associative commutative algebra of
functions of .#, and its commutator version defines a quantum deformation of the
Poisson brackets algebra. The deformations of associative and Lie algebras are
governed by the Hochschild and Chevalley cohomologies, respectively. Remark-
ably, the deformation given by (5.38), (5.39) is precisely the deformation discovered
by Vey [22,21] (see also Refs. [23,24]). Indeed, in Darboux coordinates, operator .%
can be rewritten in the form

%(3) u(3) 3F#n8p# 0,10, wg, ® 3 (5~42)

viuuFou

and the third order term in (5.38) coincides with the Chevalley cocycle S3 of Refs.
[21-24],

S} A, B) =2, A0*®*OZ, . B. (5.43)
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The operator % has a simple geometric interpretation. In Darboux coordinates let
us introduce quantities r,,= wwl" A which are totally symmetric. Then < can
be expressed through the Lie derivative of the connection I" along the hamiltonian

vector field X, =[A, - lps with the hamiltonian A [22],
ZnA =04~ ExT )u (5.44)
Thus, BFV quantization of the BFF-converted system with first-class constraints
provides straightforward means to recurrently compute manifest expressions for

the Hochshild and Chevalley cocycles of all orders, and deformation quantization
can be derived from BFV quantization in the gauge ¢ = 0.

5.4. Pure gauge solution, parallel transport of quantum observables and W-bundle

All the considerations of Sections 4.8—4.10 are quantized directly by substituting
Poisson brackets and commutative multiplication of functions with the sin-brackets
and *-product. In particular, parallel transport of Weyl symbols of quantum
observables is defined by the quantization of (4.66) (recall that we denote Weyl
symbols and classical quantities by the same letters),

i

G(xy, x,) =P exp(—h—f lad,,= W)

X0

2 -
=Pexp(—f;j;1th“(t)W“(x(t), é) sin(%ha;A,,bé;”)). (5.45)

Then the master equations (5.20) for Weyl symbols of classical observables have a
general solution,

‘M(x’ ¢)=G(X,XO)M0(¢), (546)

with the initial condition #/q(¢) = (xg, b)-
Let us introduce a Weyl symbol,

i %
#(x,, Xo) =P expx Zf W
Xo

i

-1+ E};:dtx“(t)W,L(x(t)’ )

—%{ dr dt' (D) #(OWLx(1), 8) = W(x(1), 4)

+ (5.47)

A, ={to<t<ty, to<t' <t t=t},

[ #(x5, %)l = [# (%0 x)] ' =% (%0, X1)- (5.48)
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Then pure gauge solutions can be written in the form

%Wu = [8,2(x, x0)] * [#(x, x0)]", (5.49)
(%, $) =2(x, x,) * Ho($) * [%(x, x,)]". (5.50)

Now quantization of the Symp(R?")-bundle & is straightforward. Consider a
bundle #Z.# (which we will call the W-bundle) over .# with fibers F = %, and
the structure group Aut(#,,). The symbol 2 (Weyl symbol of the BEV-BRST
operator ) defines a flat connection on YA,

%ad* ()=d—5ad* W, C*edx*, (5.51)
and the Weyl symbols of quantum observables are covariantly constant sections of
##. Thus, for every classical observable A(x) on .# BFV quantization yields a
section & of the W-bundle with the flat connection ad (2.

Let {#,} be the covering of .# as in Section 4.10 and {W,} and {&/,} are
trivializations of the flat connection and a quantum observable ., i.e.

7 Wa=(d%,) * %, (5.52)
A=Wy * Hoo * Uy, (5.53)
i ,x,
%, =P cxp(g fx 0‘“Wa . (5.54)
Then on intersections &, N &, we have
A=Wy * A * Ung, (5.55)
Wo=Upg * Wy * Upg +ih(A%,5) * %oy (5.56)
Q=W * 0y * 21, (5.57)

and on triple intersections
Upp * Ug, * U= 1. (_ (5.58)

However, note that the structure group of the W-bundle is Aut(#, ) with the Lie
algebra Der(#,y) =%,/ {1}, rather than the Weyl algebra itself. Indeed, the
symplectic potential term V, 1 in the gauge field W, falls out of the connection
(5.51) since it belongs to “the center {1} of Wz ~ As a result, the overall
¢-independent phase factor of (5.54) is inessential because it falls out of the right
hand sides of Eqs. (5.55) and (5.57). Thus, in order for the W-bundle to exist, the
cocycle identity (5.58) must hold only up to an arbitrary ¢-independent phase, and
the overall phase of #,, remains undetermined.

Substituting (5.53) in Eqs. (5.55) we find similar to (4.84) that #,; can be
reduced to x-independent initial conditions,

U = Uy * U * U " (5.59)
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and
Aooa=%ap * Hypg * %0_,;,3- (5.60)

The moduli space of inequivalent W-bundles is H(#, Aut(#; N =
Hom(rr,, Aut(#))/Aut(? ), which is a quantization of H'(#, Symp(R*V)).
Again we will limit ourselves to linear canonical transformations, ie. to the
W-bundles with the structure group reducible to Sp2N; R),

Youp=Yoa * Ho.ap * Uoh» Hoap € Sp(2N, R). (5.61)

Since for quadratic hamiltonians Poisson brackets coincide with the * -commuta-
tor, the ug,p are given by

i
Ugep = exp(gfaﬁ), (5.62)

where the f,g are classical quadratic hamiltonians (4.90b), and for &g, =
sl * Hoo* %pu WE have

Sy =Uoap * Fop * uyls =50 p(559) (5.63)

(see (4.91), (4.92)). Thus, Symp(R?)-bundles are quantized directly yielding W-
bundles without any additional topological quantization conditions. However, in
quantum mechanics we are interested not in the algebra of quantum observables
by itself, but rather in its hermitian representation in the Hilbert space of physical
quantum states R ohys- While discussing quantum observables, we have neglected
the overall ¢-independent phase factor of the transition operators U,p a8 well as
the ¢-independent terms V1 of W,. Working with the representation in R gy, We
will no longer be able to neglect those terms. Moreover, from the preliminary
considerations of Section 3 we can anticipate their critical importance for the
existence of such a representation.

6. BFV quantization of BFF-converted system II: Hilbert space of quantum states
6.1. Fock representation, Wick ordering and physical states

In the previous section we have constructed the algebra of quantum observables
Fopslh) in terms of Weyl symbols. OQur next task is to construct its representation
by hermitian operators acting in the Hilbert space of physical quantum states
R ohys- According to the BFV procedure, Ry of the quantum system with
first-class constraints is defined as the zero-ghost-number cohomology space (2.33).
Then the algebra of quantum observables defined by the cohomology (2.21) is
naturally represented by operators in R gy (2.33).

First, we have to define an extended Hilbert space e for our converted

A

system. Let us separate operators ¢, into creation and annihilation parts,

[a, a}] = - 18}, (@) =al, i,i=12...N- (6.1)

J
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Then the quantum states of R, are defined by

l) =g(x, d', A, C, 2)10), (6.2)
where the vacuum vector |0) is annihilated by all 4°,
@'10y=0, i=1,2,...,N, (6.3)
and
d
H=x", b= _iha—xT’ (6.4a)
~ d
Bo=de, f, = —ihr, (6.4b)
A 2 9,
Cr=CH, 9u=1h8—6,7, (6.4c)
al

(6.4d)

We have selected Fock representation for $a and the Schrédinger representation
for all the other operators (6.4).
The BFV-BRST operator {2 is now given by

A A . d
2= C"'ZL - lﬁ@""gj\—” (6.5)
with the quantum constraints
i . 1,
Z.Z‘_=a“+ EW‘“ (66)

The gauge field
W= %(x’ ﬁTa &)
= Z 1 W ip) at A AL aig 6
T &gl i, Gy 45404 67)
p.q e

is now a Wick ordered operator which is directly obtained from the Weyl symbol
W, =W/x; at, a) (5.12) by first passing to the Wick symbol according to the.
standard rule ;

WWi°k=exp _ﬁ 82 _ WWeyl (6 8)
" 20dlda’ | * '

and then substituting variables 4" and a with the operators 4" and & in the Wick
order.
Then Eq. (2.32) for physical states,

QYo =0, (6.9)
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is equivalent to

d
A
and the zero-ghost-number condition singles out states that are independent of
ghosts C and £,

Thus, the physical states |¢
and af,

T | Popys? =0 and | ¥onys? =0, (6.10)

onys) depend non-trivially on 3N variables x*

]

1
| Wonys) = L 279"}, L 10D, (6.11)
k=0 -

and satisfy the quantum constraints equations
1
+ o Walxs 4%, 8) | 1ty =0 (6.12)
that further reduce the number of independent variables to only N. Indeed, the
dimension of the original phase space .# is 2N, and physical states must depend
on half of the phase space variables.

6.2. Pure gauge solution and parallel transport of physical states

In the coordinate neighborhood & of the point x, €& parallel transport of
physical states along the path I' going from x, to x, €& is defined by the unitary
operator

N i px; .
#(xy, x5) =P exp(—f ‘W), (6.13)
R,
A t A

[#(x, x0)] = #(x0, x1), (6.14)
and the general solution of quantum constraints can be written in the form

| Wogs? = Z (%, X0) | Ypiys 07 (6.15)
with the x-independent initial condition

| 'ﬁphys,o) = (/fphys,o( ﬁT) 10>. (6-16)

Thus, it is enough to know the value of the physical wave function at the origin x,
to be able to reconstruct the entire function on &.
Similarly, for the quantum observables which are now hermitian operators,

& =(x; &', 4), =, (6.17)

that can be directly obtained from the Weyl symbols (5.22), a general solution to
Eq. (2.25) is given in the form

& =S, ‘ (6.18)
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with the x-independent initial condition Mo Mo(a @). It is easy to see that due
to (6.15) and (6.20) the initial condition (| Yonys?)o for the physical state
o | a//phys) is given by MO | Wohys.0-

6.3. Global description. Bundle of symplectic spinors and metaplectic anomaly

Let R, be the Fock space spanned by the monomials
d—ltl"'ﬁ'z!.klo>= k=0: 13"-7007 (6.19)

& the group of unitary operators on R,, F, the associative algebra of hermitian
operators on R, and &' = Aut(?o) the group of inner automorphisms of F,, i.e.
conjugations of the form Zw#% ! ?Z € Z. Multiplications on the phase e’ form a
center of &, and ¥’ is 1s0morphic to the quotient £/U(1). Consider a Fock
bundle R.# over # with fibers F =R, and the structure group G =%. Then £}
defines a flat connection in R .#, and physical states are covariantly constant
sections of the Fock bundle with respect to this connection. Further, consider an
associated bundle F.# over .# with fibers F = %, and a structure group &'. Then
ad £ defines a flat connection on F.#, and quantum observables are covariantly
constant sections with respect to this connection.

Let {#,} be a contractible open covering of .#, and {W} {l¢,0) and {w,} are
trivializations of the flat connectlon W, a constant section l(//) of R.#, and a
constant section & of Z.#, ie. W W Ldx*, ¢, and M are pure gauge
solutions on &,

;Wa =d¥, #1, (6.20a)

10> = 2, 15,0, (6.20b)

o= Uy B, (6.20c)
for some finite #-gauge transformations

#o(Xy» Xgq) =P exp(%L:“Wa), Xou €Oy X, EO,, (6.21)

~and initial conditions | pqr €Ry and ‘59'0,& € %,. Then on the intersections
&, N & we have Z-gauge transformations

| 1/’ > éa:ﬁ l ¢’B>’ (6'22a)
Ay = Hpg oW, (6.22b)
W, =& W2 +ih dZ, sZ, (6.22¢)

and on the triple intersections @, N g N &, the cocycle identity must hold,

Hop gy ¥y = 1. (6.23)
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Similar to the considerations of Sections 4.10 and 5.4 we find that the ??aﬁ reduce
to x-independent initial conditions

A

#op = o a5 ", (6.24)
which must satisfy the x-independent cocycle identities

%0.ap%0,8v%0,ya= 1 (6.25)

The moduli space of Fock bundles with a flat connection is thus a set
Hom(w,, £)/% of conjugacy classes of unitary representations of the fundamental
group 7, of .# by unitary operators in the Fock space. In this paper we will
restrict ourselves to the Fock bundles with transition operators ?;A/o,aﬁ admitting a
reduction to the finite-dimensional subgroup %; C ¥ with the Lie algebra g, = u(1)
® sp2N; R). )

First, let us consider the topological structure of %. Let b be a hermitian
operator on R, and % = exp(ib /#) is the corresponding unitary operator. In this
way the algebra [i.#,] of (anti-)hermitian operators can be roughly identified with
the Lie algebra of £. Operators B=¢]1 proportional to the identity operator
generate an U(1) subgroup of £. Next, quadratic operators of the form

f= 3| Fuaiar + 4fi(alal + a'a) + f,a4) (6.26)

form a symplectic subalgebra sp(2 N; R). The correspondingf N(N + 1)-parametric
subgroup of unitary operators of the form

%= exp(%f) : (6.27)
is called the metaplectic group Mp(2N; R). Topologically it is a double covering of
the symplectic group Sp(2N; R). It is a quantization of classical linear canonical
transformations that was studied by Fock [59], Weil [60], Shale [61], Segal [62],
Bargmann [63], Berezin [64] and others. The representation of Mp(2N; R) in the
Fock space has a rich history both in physics and in mathematics and has many
different names: Fock representation, metaplectic representation, symplectic spinor
representation, Shale-Weil representation, etc. (see Refs. [11,65] for reviews).
Curiously, at the infinitesimal level it was first manifestly constructed by Majorana
[66], who, exploiting the embedding of the Lorentz group SO(3,1) c Sp(4; R),
proposed a new relativistic wave equation of the Dirac type based on symplectic
spinors. Instead of Dirac’s spinors, he considered a wave function ¢ that trans-
formed under the metaplectic representation, and proposed an equation (L“a“ -
u) =0, where the L* are four generators complementary to the Lorentz genera-
tors M** in sp(4; R). Both L* and M** were manifestly constructed as infinite
matrices (see Ref. [67] for a review). Another interesting occurrence of symplectic
spinors in physics is the Dirac singleton [68]. Dirac exploited an isomorphism
Sp(4; R) = SO(3,2) to construct two remarkable representations of the anti-de
Sitter group later called Di and Rac [69]. The crucial feature of singletons is that
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their square root decomposes into the direct sum of all the unitary massless
representations of the anti-de Sitter group [69,70].

Returning to our consideration, it is easy to see that operators (6.26), (6.27)
indeed realize the double covering of Sp(2N; R) by noting that the Wick normal
form of 3f/(a]a’ + 4’a}) is given by (note the minus sign in (6.1))

3fi(ata + a'at) = fiala’ — infl. (6.28)
Furthermore, since
fi=~i(ln F)j, (6.29)

where F is a unitary matrix, we note that
A [ _
U(F) 10y = exp(;l-(%ih trIn F)) 10) = (det F)~'/?|0), (6.30)

and as a result of the two-valuedness of the square root we obtain
Sp(2N; R) = Mp(2N; R)/Z,. (6.31)

The metaplectic representation of Mp(2N; R) in R, has two irreducible compo-
nents Ro=R .0 ® R 45 Revenl R oqa) is spanned by the monomials (6.19) of even
(odd) degrees. With respect to the maximal compact subgroup U(N) it is decom-
posed into the infinite direct sum of irreducible representations Ry = &7_,R,,
where the R, are irreducible representations with the basis (6.19). In particular,
the vacuum vector |0) forms a one-dimensional representation F — (det F)~ /2 of
U(N) % (6.32) (more precisely, of its double covering MU(N) € Mp(2N; R) some-
times called the meta-unitary group [15]). Then the representation of U(N) in Rox
is given by

U(F)d},...a} 10y = (det F)~"2Fjr.. Fj+d} ... 4} |0). (6.32)

However, it is not the group Mp(2N; R) itself that interests us, but rather a
group &;=[Sp(2N; R) X U(1)]/Z, of operators of the form (with f given by
(6.26))

lj=exp(%(¢> +f)). _ (6.33)

Since we are now dealing with states rather than observables, transition opera-
tors may also contain multiplications on the overall phase factor. The maximal
compact subgroup £f C ¥; is isomorphic to [U(1) X U(N)1/Z,.

Let us now return to the Fock bundle with flat connection. We are looking for
solutions to the cocycle condition (6.25) in the form

fo,ap = exp(%[%;s + 3(fap);{ 8107 + ﬁ"ﬁ!)]), (6.34)

i.e. for representations 7, = &f =[U(1) X U(N)]/Z,. (We can always reduce the
structure group %; to its maximal compact subgroup.)
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The vacuum expectation value of the cocycle condition (6.23),

<0 I @O,aﬁéﬂ,ﬁy@&ya IO)

= exp(%{[(baﬁ - %h(faﬂ)i] + [d’ﬁv - %h(fﬁy)z] + [¢7a B %h(fy"):]})

=1, (6.35)
is equivalent to a topological quantization condition
1
2—77_h(naﬂy ~ 3hitos, ) EZ, (6.36)
where

Ragy = Pap + Py + Pyas
Papy = (faﬂ): + (fﬁy)z + (fva)z

The rest of (6.23) is equivalent to the cocycle condition for the SU(N) vector
bundle that always exists. Eq. (6.36) is a modification of the original quantization
condition (3.22). As a result of normal ordering there has appeared a quantum
correction — %hp,aﬁy that we will call a metaplectic anomaly.

The metaplectic anomaly has a natural geometric interpretation. Recall from
Section 3 that {naB.,/th} is a Cech cocycle with the de Rahm representative
w/2mh. Its integrality guarantees the existence of a line bundle L with connection
(prequantum bundle) with the first Chern class ¢,(L) =w/2mh. Suppose that
(3.22) is indeed satisfied, i.e. the Kostant-Souriau prequantum bundle L does
exist. Then from our corrected quantization condition (6.36) we find that the
metaplectic anomaly must also satisfy a cocycle condition

1

T tasy S L. (6.38)
If (6.38) is satisfied, we can construct another line bundle that we will denote by
K12 1t is called a bundle of half-forms [11] or pure symplectic spinors [9] and is a
(minus) square root of the determinant line bundle K. Determinant bundle K has
a structure group U(N) acting on the one-dimensional fibers according to the
determinant representation F — det F, F € U(N). K is obtained from the bundle
of U(N)-frames over .# by taking determinants of the unitary frames at every
point of .# as fibers of K. Such a bundle always exists since any simplectic
manifold possesses an almost complex structure. The square root bundle K~ 12 is
constructed by gluing the Fock vacuum |0) to every point x of .#. The first Chern
class of the determinant bundie is given by

(6.37)

1 1
CI(K) = Etr R= ER:, (639)
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where Rj- is a curvature two-form of the bundle of unitary frames. Then the first
Chern class of K172 is

c(K™?) = —z¢(K) = — LR: (6.40)
47

Since the first Chern class is a de Rahm representative of the Cech cocycle
{[.Laﬂ,y /4w}, and it must be integer, we find that for a topological condition (6.38)
to be satisfied c;(K~'/?) must be integer and, consequently, ¢,(K) must be even.
Only in this case does there exist a bundle of symplectic spinors [9]. This is similar
to the situation with Dirac spinors on riemannian manifolds. In order for a
manifold to admit spinors, its second Stiffel-Whitney class must vanish. The
second Stiffel-Whitney class is a real SO(N) counterpart of the class c (K~ 1/?)
(mod 2) (it is also called the Maslov class [70,11,14]).

However, our assumption of the existence of K~ '/4 i.e. that the condition
(3.22) holds, is actually superfluous. All we need is the entire quantization
condition (6.36). Bundles L and K~ !/? may not exist separately. All we need is the
existence of the line bundle LK~1/? with connection

1/2

i .
-5 (V- 3h4), (6.41)
where Af,- is a U(N )-connection. The Chern class is
1 1
LK™ V%) = —Lc(K)= —w— —R:. .
cl( ) cl(L) 2c1( ) 27Thw 477' i (6 42)
The integral form of the quantization condition (6.36) is
1 1 _
— —— | ReZ 6.43
2mh fzw 471'];; ! ( )

for any two-dimensional cycle 3.

To summarize, in order for the Fock bundle with the structure group reducible
to the finite dimensional subgroup #f to exist, the necessary and sufficient
condition is given by (6.43). Inequivalent bundles are classified by symplectic vector
bundles and line bundles LK~!/2, Note that we have obtained the correct
quantization condition including the metaplectic anomaly directly from BFV
quantization of the system with first class constraints.

It should be mentioned that the U(N )-connection Aj. and curvature Rj- in
(6.39)—(6.43) differ from the torsion-free symplectic connection A‘:f’ (I'z,) and
curvature R4, (R7, ) defined in Sections 3.7 and 4.5 when the manifold .# is not
complex (kihlerian).

Let J; be an almost complex structure (that obviously always exists on any
symplectic manifold). According to the Newlander—Nirenberg theorem [53] .# is
complex if and only if J has no torsion, i.e. if the torsion tensor defined by

NS, = 2(]:6015 — 78,10 — 188, J7 +J% J") (6.44)

voovu vV
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vanishes identically, Then .# is kdhlerian and w is its Kihler form. The torsion-free
symplectic connection is now required to respect the complex structure J that fixes
its arbitrariness (recall that I" is defined by (3.29) only up to the totally symmetric
tensor of the third rank that falls out of the LHS of (3.29)).

However, it is known (see Ch. IX of Ref. [55]) that an almost complex manifold
admits a torsion-free almost complex connection if and only if J has no torsion.
That is, when N does not vanish, our torsion-free symplectic connection I is not
compatible with any almost complex structure. Nevertheless, it is possible to
construct another connection (see Theorem 3.4, Ch. IX of Ref. [55])

re,=re—Qr, (6.45)
where
ZV = %(J,f’V(,J‘f +J5VVJ‘;' + ZJf,’V“J,j’) (6.46)

(the covariant derivatives V, in (6.46) are calculated with respect to the original
connection I'). This new connection is compatible with the almost complex
structure J, and its torsion is proportional to the torsion of the almost complex

structure
T¢, =Ip, —Tp = NP, (6.47)
It is this almost complex U(N)-connection (6.45) that should be taken in place of

the original torsion-free connection in Egs. (6.39)-(6.43) in the non-Kihler case
(R} in Egs. (6.39)-(6.43) is the corresponding U(N )-curvature).

7. Conclusion

To summarize, we have presented a gauge-invariant approach to geometric
quantization that yields a complete quantum description of dynamical systems with
non-trivial geometry and topology of the phase space. We have seen that the
gauge-invariant approach incorporates geometric and deformation quantization
approaches in a unified theory. Both the problem of quantization of the entire
algebra of classical observables in terms of operators in geometric quantization, as
well as the problem of finding Hilbert space representations of formal deforma-
tions arising in deformation quantization can be solved in the gauge-invariant
approach.

In this paper we have considered the most general case of arbitrary symplectic
manifolds. In applications some additional geometric structures are often given on
the phase space, and the quantization process should preserve those structures.
Especially important are d ical systems with symmetry. Suppose the original
classical system on (I,Mth generators J4 Awith the
Poisson brackets [J4, JB]2, = fAB]€. At the quantum level, operators £ acting
on sections of the Fock bundle must commute with {2 and satisfy the same
commutation relations [_#4, #8]=itfAB#€ (up to a possible anomaly in the
infinite-dimensional case). Then covariantly constant sections of the Fock bundle
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(zero-ghost-number cohomology (2.23)) form a representation of (central extension
of) G. This point of view is close to the Borel-Weil-Bott theory of group
representations and the orbit method [8,16,72]. All types of symmetry groups may
be considered in this general setting (compact and non-compact, finite-dimensional
and infinite-dimensional). It is a very interesting problem to investigate this
gauge-invariant approach to group representations. We will return to it in a
subsequent publication [73].

Applications to infinite-dimensional dynamical systems with symmetry groups
are especially important for quantum field theory applications. It is particularly
tempting to conjecture that two-dimensional conformal field theory may be under-
stood in these terms. Instead of the Z, metaplectic anomaly in the quantization
condition (6.47) which (mod 2) can only take two values — 0 and 1 - we will have a
full fledged anomaly. Indeed, the phase space is now infinite-dimensional and the
infinite-dimensional group of linear canonical transformations will acquire a cen-
tral extension by the entire circle {65,72]. At the infinitesimal level it will be given
by the central extension of the infinite-dimensional symplectic algebra, and, as a
consequence, the conformal algebra generating classical conformal symmetry will
also acquire a central extension. One can speculate that better understanding of
this geometric picture of two-dimensional conformal field theory will lead to some
advances in conformal field theory in more than two dimensions and, in particular,
will shed some light on the geometric structure behind anomalous Ward identities
in D> 2[74].

Another interesting potential application is to three-dimensional topological
field theory developed by Witten [75,76]. Geometric quantization of Chern—Simons
tl_l_gg_ry with a group G on the three-dimensional manifold .# =R X 3, where 3 is a
riemannian surface, leads to quantization of the moduli space of flat connections
I =Hom(w(3), G)/G which has a natural symplectic structure [75-77). In
essence, one can say that Chern—-Simons theory is a non-minimal conversion of a
system on 7. The first-class constraints of the Chern—Simons theory reduce the
number of physical degrees of freedom. On the other hand, the gauge-invariant
approach to geometric quantization based on the conversion procedure considered
in this paper generally provides a minimal gauge-invariant extension that is
sufficient to perform operator quantization. One could introduce more auxiliary
gauge degrees of freedom and subject them to additional first-class constraints.
The resulting system would have the same physical contents. Chern—Simons theory
is such an example. On the other hand, if one would start with the moduli space
., rather than with Chern—Simons theory, and wanted to quantize it, our conver-
sion approach would provide a minimal gauge-invariant formulation, the physical
states given by covariantly constant sections of the Fock bundle over & with the
flat connection defined by the BFV-BRST operator {2, and quantum observables
given by covariantly constant sections of theAassociated bundle of hermitian
operators over .7 with the flat connection ad (2. This theory would describe the
physical contents of the quantum Chern-Simons theory and could provide an
operator formulation to the results obtained in topological field theory by means of
the path integral approach.
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Appendix A
Notations and conventions

Throughout the paper we use compact tensor notations introduced in Ref. [43]
on higher spin theory. Lower (upper) indices denoted by the same letter are
authomatically symmetrized and instead of writing & “'---% we simply write .o,
indicating in brackets the number of indices to be symmetrized. Summation over
lower and upper indices denoted by the same letter is understood as usual. (Note
that there is no summation over the lower (or upper) indices denoted by the same
letter, e.g. 4% = (W% 4+ /%%) but & =Y Nw*) Summation over upper and
lower indices should be performed only after the symmetrization over all lower and
upper indices denoted by the same letter is carried out separately. We also use the
following short-hand notations:

1
Vu(n) = ; V(ul te Vu,.)’ <8 (2) Z(VPqVF-z + V#z #1) (A'l)
Aﬂ(n),b(n) = Sym(Aa1b1 T Aa,,b,,): (A2)
@M = Sym( w1 her), (A3)
h,"f(',‘,)) = Sym(h"1 .hﬁ:), (A.4)

where Sym stands for the (weighted) symmetrization. To illustrate, the short-hand
notation in Eq. (5.13a) should be read as follows:

a( p)b(m) a(q)e(m)
W, Apimy.comWs
- ...apbi...b,, eiCp
= Sym(Wroobrbmpy A, Wt on) (A.5)
where symmetrization is performed in the p + g upper indices ay,...,4,,, after
the summation over upper and lower indices b,,...,b,, and c,,...,c,, is carried

out. When performing calculations (such as in Appendix B) one has to be careful
with combinatorial factors appearing as a result of symmetrization.



E.S. Fradkin, V.Ya. Linetsky / Nuclear Physics B431 (1994) 569-621 617

Appendix B
B.1. Eq. (4.49)

Substituting (4.49) in (4.47) and using Bianchi identities (4.43) one finds that
(4.49) is indeed a solution,

RED + [ hE Ao ARERID + 2A*HER) — (1 o v)]
— Ra 1 pa(2 1 pad b ac b ac
= RID + 3RID + 3A“hG( k) Ay R3S + RE A, R
= JRID + 3A%hE( —h3 A, RES) = 0. (B.1)

B.2. Eg. (4.61)

First, let us rewrite Eq. (4.60) in the form

() ()]
&P = A“bh”Dsw"@) Ath} W"(z)‘Ach (B.2)

Due to Egs. (4.59) and (4.38) the first term reduces to the first term in the RHS of
Eq. (4.61). Substituting (4.49) and (4.56) into the second term one obtains

©)
— AR W“(z)cAcd.M

= AR (AR RED + 24 R4 RIS ) A AThEY, A

= 3APhlw?” R%78, A

= A"hE(R,,,\ThEhi A ) 0?78, 4

= — A OPORE(R, 0, 0", A). (B.3)

B.3. Eq. (5.18)

Substituting (4.49) into Eq. (5.17) one finds

@

. (0)0(3) ()} G)
= 2 W,L Aa(3),b(3) W,

— 3 (2,52
= 128(0”() DR

78

P 2),M2 o
wds W), 0(3)(‘)0( A )Ru,\A

= ésR w w"(z) "(Z)R

noa
= ﬁ(RI"UIUZ +Rﬂ‘72¢73 poy
+RM0'3"1 + R#"l”’a + Ruasf"z P,
+Rlufzﬂlpwﬁ“’s)wo'll\l‘:')O'Z)QR’”HMG3

= ﬁ(R AZRVMI\;TZ(UGI/\] +2R AlRVAIA;’lw"ﬂ‘Z)_ (B4)

KO0 KO0
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Egs. (3.32) and (3.33) are used to reduce six types of R? terms to the two terms in
the final expression.

B.4. Eq. (5.27)

From Eq. (5.26) one has

03] ( ()] ) () )

& ° = A%h W”3Ab(3) ¥ O —WhA, ¢ (B.5)

Substituting (4.56) and (5.18) in the first term one obtains

(2) (0) @
WiApo =3 ,,0"A. (B.6)

By means of Eqs. (4.48) and (4.61) the second term is reduced to

Q) 53) ©) 3 5 P
W[.L Ab(3),c(3)£’ = - pruwpa.R”'va.
X (V,3A = iR, ,, 0,09, A)

= —20”w*°R, V. A — 8w "9, 4.

pro 7 p(3)

Combining (B.6) and (B.7) gives Eq. (5.27).
B.5. Egs. (5.38), (5.39)

From (5.37) one has
A*pB=( * B)|s-0

()] (0) . 2 a2) () ")
=AB — glh.sf Aabﬂ —zh M Ay pr®

3) b 3 (V)] (0) ® 2)
Lit?| 9 A,,(3),,(3)£’ —24( 5N, B +M“Aab.@’)

(B.8)

The first three terms are obvious. Let us consider in more detail the #> term that
contains non-trivial curvature dependence. Substituting (4.61) in the first term one
obtains

o a(3) © 5b(3)
=& A b ®
A N3 1 K &
(VI"'(3)A I‘l‘fll' (1) wp'ra A)w“( e )(VV(3)B - ZR&/V wKVw ‘”a‘rTB)

= V,540*®*OV, B + 1[V, 5 40*P*OR,, 0?3, B — (A < B)]

- %a#A ©"3,B, (B.9)
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where

@,, L@
0" =00 e ,,, (B.10)

(3]
and oo is given by (5.18b).
The second term reduces as follows:

@, © o o
AN B+ AN B

2)
= AR R, 0 OOV, A 436 07, A) Ay A3, B
—(4 < B)
)
= %R, 0 P*PV , Aw*"8,B— (A< B) -39, Aw™d,B. (B.11)

Combining (B.9) and (B.11) one finally arrives at

()] 3 (O)b3 ) (0) © (2)
A W ”+24( Ay B+ AN, B )

=V, 540"V, B+ [V, 5 AP @R #0wr%9 B — (A< B)]
@
~1%6,A0"3,B
A Lis 87
= (VM(3)A _RPI"'I"' w)‘“wp 30.A)a)""(3) (3)(VV(3)B —R
that proves (5.38), (5.39).

‘@, @*"3,B) (B.12)

vy

B.6. Eq. (542)

To prove that our operator .7, (5.39) indeed coincides with the operator
(5.42) of Refs. [21,22], let us consider Darboux coordinates with the canonical
symplectic metric w*”. The symplectic connection reduces to the totally symmetric
tensor I, I'5, =w**l,,,, which, modulo gauge transformations, defines its
topological class. Then &z ©.3) can be reduced as follows:

A=V A-R,, 0, 0%, A4
“(3)14 31":“3”A +( 0“11:’_‘+5”['V7Lw w” )a A
—0,I), w,, 0", A
+ 265,18, — (TaLh, - Tl 0,078, 4
=d,5A4—-3I00,,A-8,I w, 0", A. (B.13)

Finally, it is easy to see that the two last terms are nothing but the Lie derivative of
I,z along X =3,40"3,,

m
Ex,L )y =0, A0, l,0)+30,0,A "L,
A (B.14)

7

= 0,10y 0, 0”8, A + 3129,
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