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A new (nonlinear) realization of conformal transformations of nonabehan ﬁclds is found. These transformations (unlike
the usual linear ones) leave the generating functional invariant and permit one to obtain a nontrivial quantum Yang-Mills
theory. The gauge field dimension is shown to be canonical while the field tensor has an anomalous dimension. The invariant
propagators are found. The possibility of the solution of the confinement problem is discussed.

1 Conformal solution in quantum gauge
theories is possible either for fixed values of the

. charge-zeroes of the function 8(g), or for 8(g) =0,

as for example in N = 4 extended supersymmetric
Yang-Mills theory [1] and in N =4 extended
- conformal supergravity [2]. Study of conformal
solutions is of particular interest in connection
with the problem of confinement,
It is well known that classical equations of the
gauge fields are conformally invariant, but the
- quantum formulation of the conformal-invariant
nontrivial gauge theory is still absent. In fact with
the assumption that the vacuum is invariant with
respect to special conformal transformations and
the gauge field A (x) is transformed as a confor-
mal vector with the dimension d A= 1

| A,,(x') > 4,(x) +aKnd (), | @

where

» KAAF = (xza;\ - 2xkx,3,
—28,"‘x,A,,~

- 2XA)A“ + 2x“A>‘

~ then, as known, a purely longxt-udlnal ekpresswn
T~ 0] 4,(x;)A,(x)0) ~ d,d,1n x}, is obtained for
. the prppagator The reason is that the gauge term
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_ side). From (3) it follows that Seau
' mvanant on the subspace of the ﬁelds of the form

in the generating functional in the euclidian theory

.'_Z(.I)=N“.f [dA]det|d \7|exp(_[dx

X sp [.- (1/4a)(8,4,)" - E2+ A,J,])

breaks its invariance with respect to (1)

: 1 2
 Syauge =75 J 9x5p( 3,4,)"

1 2
—*E-fdep(apAF+4€,\AA) (3)

(the surface terms are omitted on the right-hand
remains

= 9,5(x)S~!(x) only, which correspond to a

' pure gauge. These fields form an invariant wnh

respect to the subspace (1): 43 — A3, where
§'=[1+ ex(x29) = 2x,x,9,)] . S
For such fields we find: " :
8Sgauge ~ fafdep [3,(3,5-571) 8,5 57]

e —c,‘fdep OS~'8,S + 3,5713,,8) =0
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Thus. the’ generatmg functional (2) is mvanant
with respect to (1) only in a purely gauge sector,
which is the reason of the longitudinality of the
propagator. Note that any other gauge does not
admit invariants with respect to solution (1).

2. The idea of the proposed approach consists
in constructing a new (nonlinear with respect to
A) realization of conformal transformations,
which keeps the generating functional (2) invariant

" on the whole space of the fields 4, and thus allows
a nontrivial conformal quantum Yang-Mills
theory. This new realization is determined by the
structure of the functional (2). In fact, the term Fj 2
is invariant with respect to the direct product of
conformal and gauge groups. The gauge term
breaks each of these symmetries. We show,
however, that a complete change of the product

2
3,4,) )

.

under the action of speciat conformal transforma-
tions (1) can be compensated for by a special
gauge transformation nonlinearly dependent on .
the field. Thus we show that there are combined
{ransformations consisting of conformal and spe-
cially selected gauge transformations, that leaves the
functional Z(J )|, .., and, therefore, the vacuum
invariant. These combined transformations form
a nonlinear (with respect to the field 4,) reali-
zation of the conformal group. We determine an .
explicit form of these transformations for quan-
tum fields and the invariant propagators. In
conclusion we present a brief discussion of a new
possibility- of -the solution of the confinement
problem, which appears in our approach.

mwijer e

[dA]det|3V|exp(— Zl-‘;fdep(

3. Consider variation of the functional (2)
under the action of transformations (1). Let us .
make in det |3 V}\the substitution (l) and multxply
it by the factor ™ N

B(e) =det|1 + (%29 — 2_x,\x,,a,) l,-
‘independent of A, Negleqﬁng the terms ~ €3 we

b
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obtain after some simple calculations:

. det|d v'|B(¢)

=det|d v + €,(x%3, — 2x,x,9, - 4x,‘).3 v

+4‘AVAl
= det |3 V'|exp {Sp [q x 23\ — 2x,x, 9, 4x,‘)

+46,v(1/8v)]},
where v,/ =d, + A4,. The first term in the
exponennal can be omitted, since it does not

depend on A4,. | As a result we find, up to
insignificant factors,

det~|3-V|exp(— 21; J dxsp(a“A,)’)
> det|d V + 4¢€,V,| \

Xexp(— Zl:x-fdep(aﬂA“+ 4¢,\A,‘)2). 9

If we substitute this into (2) and make an
additional gauge transformation

A“ hd AF - V“(4€;‘(1/3 V)Aa),

we obtain the original expression. Thus we proved

- that functional (2) at J =0 is invariant with

respect to nonlinear infinitesimal transformations
A (x) = A,(x)+84,(x), (5)
where

84,(x) =€, K, 4,(x) —4¢,v, "3V A,(x).

The global transformations weré considered by us
in ref. [3], where their mathematical structure was

~ investigated and the group law was proved.

Note that (5) in the abelian case coincides with

. the transformation law obtained by us before [4]

in a conformal QED ¥

# The combined transformations including conformal and
gauge transformauons in QED were ako consldercd in
“ref, [5]
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4. Let us consider the transformation law of
quantum (euclidian) fields. It can be changed at

the expence of (dimensional) renormalizations and
the resolution of uncertainty 0 X oo in nonlinear

.terms [6]. Usually this leads to the emergence of

anomalous dimensions. It can be easily seen,
however, that the dimension of the quantum field
A, remains a canonical one because of the special
structure of the interaction (L, = 4, Ju)» and the
dimension dg of the field tensor F,, becomes
anomalous. For illustration we consider the
renormalized equations-

Z3F;n = (2223)1/%(“an‘4r - arAu) +ZI[A-,U Ar] L] (6) '
(2223)1/23',&, +‘ZI[A7’ Il;n]

=£09,CC+a"'2,3,0,4 (7

porites

where z,, z, axid'_zI are renormalization constants
of the fields 4, F,, and the vertex respectively.

* The uncertainty in the nonlinear terms is resolved

as follows (see details in ref. [6]): the products of
the type z;[A,(x), A,(x)] are defined as the ¢ - 0
limit of the expression zi(e)[A,(x), 4,(x + ¢€)]
averaged over the angle of the vector €,, and the
renormalization constants are considered as power
functions: z,(¢) ~ (¢?)%. Equating the total di-
mensions of individual terms in each of egs. 6),
(7) and taking into account that the dimension of
the term z,[A4,, E,,]is equal to three (because it

is the current of the Yang-Mills field) we find
da =1, dg is arbitrary and z,= const. Thus, the
‘renormalization of the field A4, appears to be finite
and its transformation law (5) is transferred
‘without change to the quantum case. Renormaliza-
tion of the charge and the combination of the

- constants z,(z,z;)~ /2, which enters the covariant

derivative, is also finite. :
A substantial Iesult is the appearance of the -

- anomalous dimension dy of the field E,, (this is

1/" ’

©(x)=4er(1/09) A5(x),
88 |

possible m the nqnabelian theory only; in confor-
mal QED d;=2). As a result the infinitesimal
transformations of the field F,, have the form

Eo (%) = By (x) + KB, (x) + [0(x), B, (x)],
(8)

,\\

PHYSICS LETTERS

1 November 1984

where

K\E, = (x%8, - 2x,x,9, - 2d.)F,,
+2ix, 3, F,

[T

dg is arbitrary and, as can be shown, for the
propagator the following expression is obtained

<OIF;w(xl)P:"(x2)'0> =~ [gya(xu)gw(xu)

‘o *gp.f(xu)Sm(xu)]/(xlzz)dF’

where g, (x)=8,, - 2x,x,/x2 :
Consider the transformation of the ghost fields

C(x) and C(x). They must lead to a similar

change in det|dwv), as in (4). It can be easily

verified that for this the ghost fields should be

conformal scalars with different dimensions:

d c= O, d c= 2,

K\C(x)=(x%3, - 2x)x,3,)C(x),
K\C(x) = (%23, - 2x,x,9, - 4x,)C(x).

For compensation of transformation (4) we should

- perform the BRST transformation with a parame-

ter being a definite functional of the fields. In this -
case the compensating terms arise due to transfor-
mation of the integration measure in the func-
tional integral [7). Let us find the required BRST .
transformation for quantum fields. Comparing the
BRST variation 84, = — V.C(x)e where eisa
small parameter, with the second term in () and
taking into account the equality C(x)C( y)=
(1/9v)8(x —y), we find: e=4e¢, [dyC?(y)

X AZ(y). As a result, for the ghost fields we have

the following transformation laws:
8C(x)= a{ KxC(x) + 2[C(x)\,(1/8 v)A,(x)] }, o \

8C(x)= q(KAC—‘(-"_)
- %f@a“A“(x)Ai(J’)C_w()’))-

-5 Let us find the invariant propagator D, (x1)

= {0]4,(x,) A,(x,)0). The invariance conditiori- 5

i
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of D,, (conformal \ZVard identity) has the form:
<0|8Ap(xl )Av(xl)'o> + <0lAu(xl)8Av(x2)I0>
=0, '

where the variation 84, is given in (5). The first

addend in this equatlon contains the nonlinear <

term D,,,(x;2)= (0} v, (173 W) Ax\(x;)4,(x,)10)
and the second the term D,, ,(x,;). Let us use the
scale invariance and the equality d;'D,,,(x;,) =
D,,(x12)- In transverse gauge we find for their
sum (see for details in ref. [3]):

' Dux-(xlz) + an,.(xz'l)*_‘ (':%'/Dx,)DA.(xl'z)

+(8:2/Dx2)Dk;f(xl2)'

As a result the invariance condition becomes a
linear integro—differential equation. Its solution
is the transverse function (the first term in (9)). In
the generalized a-gauge some additional limita-
tions on the nonlinear term D,,, are obtained and

Dpv(x12)7=A(8u‘¥ - ay.av/u)/x122
+B(8,3,/0)/xf,, )

where A and B are some constants (from the
Ward identity follows B = a).

Similarly for the Green function
{01, ,(x1)A,(x3)0) taking into account (5) and
(8) we have the following solution:

QIE, (x,)4,(x2)10)
- (35— 8,5/ (1)

vtV

where C is a certain constant to be calculated
from the bootstrap equations and for the nonlin- -
ear terms particular limitations arise which are not
given here. Analogously for the ghost fields we
find

(U7, C(x)0) = (3,/0)8(x)-

S 6. In conclusion we indicate the attractive
. possibility of solving the confinement problem in
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. conformal theory ¥2, If there is an IR stable fixed

point, the conformal theory then corresponds to
IR asymptotics. We can expect that with particu-
lar values of the dimension dy. of the field F,, it
is the latter which makes the main contribution to
the long-distance interaction and leads to its
growth (real values of d can be calculated from
the conformal bootstrap equations).

There is another more tempting possibility.
Note that the fields E,, and 4, in the conformal
theory are independent objects: F,, has an
anomalous dimension, and A “ has a canonical
one. This is a nonperturbative effect. It seems
p0531b1e that F;, determines the interaction in the
IR region whlle the field A, makes the main
contribution to the UV regxon and leads to a
decrease of the effective interaction at short ™
distances (this is possible due to a nontrivial
dependence of the conformal vertex I'y,4 on the
momenta), i.e. both asymptotics are described in
the scope of the conformal theory.

For realization of this program it is necessary
to find explicit expressions for the conformal
vertices and to clarify what value of dy implies the

. growth of the effective interaction in the IR region.

Then we should verify if this value satisfies the -
conformal bootstrap equations. A solution of these
questions will be presented in subsequent works.

~ For conformal QED an explicit expression for- the

vertex and the discussion of the bootstrap program
is given in ref. [4].

*2 See also ref. [8], where another possibility was discussed. _
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