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The Poisson superbracket Lie superalgebra on the supertorus T24I¥ is considered and its
quantization is carried out. It is shown that there exists a non-trivial supercentral extension
by means of 2d arbitrary c-numbers (when N is even), or 2d Grassmann numbers (when N is
odd). It is shown that the infinite-dimensional superalgebras on the supertorus 72" can be
considered as certain generalizations and large-M limits of the classical superalgebras A(M |
M) and Q(M) (when N is even and odd respectively).

Algebra of symplectic diffeomorphisms on the torus! T2 and its quantum ver-
sions,’ algebras with trigonometric structure constants, as well as their central
extensions,>*’ have recently attracted much attention? in the context of mem-
brane theory,>-*¢ integrable models,’ large-N limits,** etc. The N=1 supersymmetric
extension of sdiff(72) was proposed in Refs. 4 and 8, and its quantum version,
N = 1 superalgebra with trigonometric structure constants, was obtained in
Ref. 7. Different from its bosonic subalgebra sdiff(72), however, the superalgebra
does not admit any non-trivial C-number central extension,' but will never-
theless admit a non-trivial supercentral extension by means of two independent '
Grassmann numbers, as was emphasized in Ref. 7.

In this note we study superalgebras of orthosymplectic superdiffeomorphisms
and construct their quantum versions on the N-extended supertorus T?4\N, Their
structure constants are easily calculated in terms of the Poisson superbrackets and
the Weyl symbols of quantum operators.

For these superalgebras we have found non-trivial supercentral extensions.
Curiously enough, it turns out that there exists a non-trivial supercentral extension
by means of 2d arbitrary c-numbers (Grassmann numbers) when N is even(odd).
Corresponding supercocycles are presented in the form of integrals over the
supertorus.

Let us consider a supertorus T4 IV with angular coordinates 0 < ¢ <27, o= 1,...,
2d parametrizing the bosonic part 72¢=S§'X... XS 1(2d times) and the Grassmannian
coordinates ¥, i = 1,..., N (their Grassmann parities are P(¢_) =0, P(y;) =1). On
the supertorus 7 2¢¥ one can define an orthosymplectic structure by means of the
Poisson superbracket
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f.8lm=
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where o, ; is a non-degenerate antisymmetric 2d x 2d matrix which can be chosen
in the block-diagonal form (however, we did not assume this in our case):

@

(@,4)= , @

and the Latin (Grassmann odd) indices i, j,... contracted with the help of §,.
In the space of functions on the supertorus, 4, one can choose a basis of the form

Faioiy = Wy ¥, €% k=0,1..,N

iy .y

=1 K
P(Fyyi) =3 (=D,
where neZ x...x Z(2d times) and no=n%_. 3)

With respect to the Poisson superbrackets (1), 4 becomes a Lie superalgebra
with the supercommutation relations in the basis (3)

[F . F

Wiy mj;.. }PB

=mxn "rnﬂn,zl Aehydy

+h ARG, Fyp ), ()

where Alt means complete antisymmetrization with respect to all the indices i [
and j, ... j, separately

k

1

(e.g., Alt (512 A Foem vy )= Z( iy 7, nemij, 6;'1,'1 ¥, wim iy, T 6:‘1;‘2 7, nmiyy 6;'2,'2 ¥, nem,iyj ),
and
mxn=m®wn’. (&)

The algebra (4) is isomorphic to the algebra of all orthosymplectic diffeomorphisms
on 7%V generated by the vector superfields

Fn,il...ik = [-‘Tn,il..‘ik i .

=iy, . -V e™*nw_

+ ke™® Alt(v/ .Y, % ] ©)
' 4 ’
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The Poisson superbracket algebra admits non-trivial central extensions, namely
the following takes place.

The Poisson bracket superalgebra on 724!V has a non-trivial supercentral exten-
sion given by

[f’g}cps = [f’g}pB + eaca"(f’g) » (7)\
with non-trivial basic cocycles
a J '
ce(f.g)=] d@f 508 = [d® fl9, gm0 . (0,07=8]), @

where the supervolume element reads

(_1)N(N—1)/2

T dMeehivdy, ..dy, 9

2r N pe v, -4y, ®

and 6, are 2d arbitrary supercentral elements with the Grassmann parity

1
P(6,)= 5'(1- HM)="F,, (10)
and consequently

0,0,-(-1)"6,6,=0, (11)
6, f-(-1)""fe,=0. (12)

In other words, for even N there exists a non-trivial central extension by means
of 2d arbitrary commuting central elements. However, when N is odd there exists
a non-trivial supercentral extension by means of 2d anti-commuting Grassmann
parameters. In the basis (3) the supercentral extension takes the following form,

[Tn,il.--ik,fm’jx-“il }CPB

= m‘x B T omiigiyods T ki Alt (aikjl "Tl-fm,il...ik_ljz‘..j,)
+ ieama 5n+m,0 5k+l,N eil...ikjl...jN_k " (13)

To prove this, we first note that the expression

(f.g)=] d® fg (14)

defines a supersymmetric Poisson-bracket invariant bilinear form on 4,
(f,8)= (1)@ (g.f), (15)
([F8pp - 1)+ (D)™ (f,[ .8l )= 0, (16)

J. d(D[f’g}PB =0, [C“(f,g):(f, aa g]= 0 (f’[‘pﬁ’g]ma )] (17)
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The properties (16), (17) are consequences of the simple fact

d

jdcba fe=0, Yfeea(a=1,..,2d). (18)

a

Now we have to check the cocycle condition of C(f, g) defined in (8). It is
straightforward due to (16) and the Jacobi identities for the Poisson superbrackets:

(=1)" PO C(f, [, hlyy) + (~1) IR C= (g, [, )
+(C1)TOPOCE ([ fg),)
= 0% (9,1 £,[8, Al Jpg N(=1) 77O
+ 0% (0, [1Lf, 8l Jpo) (~1)770
+ 0% (0,.[8.11 flyg bpy) (<) = 0. (19)

In this way we have in our disposal 2d-independent cocycles. From Eq. (13),itis
easy to see that they are non-trivial, i.e., cannot be canceled out by means of any
redefinition of the generators L,, iy

Now we are going to quantize the ‘above Poisson bracket construction by intro-
ducing the operators ¢ and ¥, instead of the classical phase-space variables,

(04> @p)=2inw,5 , (W, ¥} =2R5, . (20)

Working with the operators, we decide to fix the Weyl (supersymmetric) ordering
and in order to simplify the calculations we use the Weyl symbols of the operators.
The associative product of the two symbols of the operators, which correspond,
after quantization, to the functions on 7%, is given by the simple formula®

frg=fexp(A)g, 1)

PB)

where

é é ér él
2 +h -
9, acpﬁ y, Jy

The supercommutator is defined as usual,

A=in

(22)

[f.8}.=frg~(-))"P"@gxf, (23)
and for the symbols corresponding to the basis functions (3) we obtain immediately
[Tn,il...ik ’ "rm,jl...j, }.
min (k) RP kU
= ¥ [(1-(-1)?)cos (Amxn)
»=0 pi(k-p)!(I-p)! ,
+i(1+ (-1)") sin(Am x n)] Alt(6ikj1 5ik_,,+1jp 7n+m,i1--~ik-pi,,+1-~i, ). (24

* The theory of symbols of operators for quantum systems with both Bose and Fermi quantities was
elaborated in detail by F. A. Berezin'® in continuation of his fundamental studies in superalgebra and
superanalysis*® (see also Refs. 14 and 15).
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In the classical limit # — 0 we come back to the Poisson brackets (4) (after an
appropriate redefinition of the generators).

The quantum operatorial superalgebra on the supertorus (24), a deformation of
the Poisson bracket one, inherits the non-trivial central extension of the latter.
A quantum algebra with the supercentral extension is given by the modified
supercommutator ‘

[f’g}.c=[f’g}.+ih BaC“(f,g), (25)

where f and g are the Weyl symbols of the operators f and g.

Now we will specify the general formulae for the particular case N = 2 to make
them more readable. So, the Poisson bracket superalgebra (with the central term)
reads as follows,

[L,.L, ]ps=mXnL
[L,,U_lpg=mxnU__+i0-md
[V, Unlos= 0.
[L,,Qulzg=mxn Qoo -
(Ua:Culors = £ Qo »

10,0 ) s =mxn U, +L,_ ,+i0-mé

n+m ’

n+m,0 °

(26)

n+m,0 °’

where 6 = (,) are 2d arbitrary numerical parameters. We have used the following
notations for the N = 2 generators,

L =e™*, Qf=a*e™,
U=a"a"e™? 1))
and (a*=1+2 (y, tiy,))
{a™, a*)y =1. (28)

The quantum deformation of the above algebra has the form (on appropriate
normalization of the generators)

(L,.L,].=sin(hmxmn)L__,
[L,,U,l =sin(hmxn)U,  +r6-md .,
[U,,U_)..=#"*sin(hmxm)L__,

[L,,0Q%],. =sin(kmx n)Q: .,
[U,,0%]..=%ikcos(Amx m)QZ,
[0:.0. ), =sin(hmx n)U

+ihcos(hmxmn)L  _+h0-méd (29)

a+m,0 °

The following interesting question is finite-dimensional analogs of the above
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infinite-dimensional superalgebras. First let d = 1 (i.e., T*W is considered), 8 = 0
and & = 2n/M, where M is an odd integer. Then due to the periodicity of the
trigonometric structure constants in (24) after identification of the generators by
modulo M,

VmeZxZ, (30)

n,iy..dp = Ln+Mm,i1..‘ik ’
we arrive at the finite-dimensional superalgebra given by (24), where the definition
of L_and the sum #n + m on the right-hand side of (24) is supposed to be taken by
modulo M. Itis easy to verify that the resulting superalgebras are isomorphic to the
following classical superalgebras of the Cartan type:

AQW DM _1|2WD2 M 1) for N even (N#0), (31)

Q0QR"™Y2M—-1) forodd N. _ (32)

First let N = 0. In this purely bosonic case it is known’ that the corresponding
algebra (after factoring out L) is isomorphic to A(M-1). Second, let N=1and the
superalgebra has the form’

[L,.L_}= sin(z—ﬂmx n] L.,
M
[L,.Q.]= sin(%mx n} Quim >

{Q,.0,}=cos (%mx n] L.., (33)

(Q,=1/2 ye™9). The generator Q, does not appear on the right-hand side of
(super)commutators in (33) and can therefore be left out. The generator L, forms
a one-dimensional center and can be factorized out. As a result we obtain a
superalgebra with A(M — 1) as its Bose subalgebra, but its Fermi generators are
transformed under the adjoint representation adA(M — 1) with respect to the
Bose subalgebra. Therefore it is just the classical strange superalgebra Q(M -1).5"
Then the Poisson bracket superalgebra*?

[Ln’Lm]PB= mxn Ln+m ’
[Ln’Qm]PB= mxn Qn+m ?
{Qn’Qm }PB= Ln+m ? (34)

(L, =0, Q, = 0) can be viewed as the large-M limit of the series Q(M) and can
be denoted as Q(e=) (¢ means that this limit is obtained in the toroidal basis
for Q(M)).

Further, let N = 2 and we are working with an algebra where d=1,0=0, 2 =
2n/M, and M is an odd integer. The generator U, does not appear on the right-hand
side of the commutators and can be left out. L, forms a center and can be factorized
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out. As a result, we arrive at the simple superalgebra with A(M-1) ® A(M -1) as
its Bose subalgebra (the corresponding sets are T = L_+U ). This superalgebra is
isomorphic to A(M - 1| M - 1). Then the Poisson bracket superalgebra (26) (with
d =1 and 6= 0) can be called A (e | o). The general result (31), (32) is proved in
the same way.

Now let us pass to the case of higher-dimensional tori with d > 1. Again let 7 =
2n/M with odd M, and (@,,) in (1) is taken to be an arbitrary antlsymmetrlc 2d x2d
matrix such as in Eq. (2) and (@?) is its inverse:

0% = 57 35)

Then due to the periodicity of the structure constants the matrix (©**) defines an
automorphism of the quantum algebra (24) (now we consider the case N=0, 8=0):

L =L, w=(n"+Mot),VteZ. : (36)
Taking an identification by modulo the matrix M.
L =L, when n*-m*=Mo%t, VieZ, (37)

we obtain the finite-dimensional algebra isomorphic to SU(M ). In this way one
can see that SU(M“) can be represented in a form with trigonometric structure
constants in many ways. Namely an algebra

[L..L.]= % siu{i’;m » ﬂnB]an (38)

with the basis L, labeled by 2d-dimensional integer-component vectors n, is iso-
morphic to SU(M?) when n + m on the right-hand side is supposed to be taken by
modulo vectors of the form

Mo*t), V e Z.
Taking the large-M limit (M — «) we arrive at the classical algebra
[L,,L.]=(mo,n")L,,, . (39)

Consideration with N>0and d > 1 is quite similar with the superalgebras (31), (32)
in the place of SU(M ).

To conclude, let us summarize the results of the present paper. First, the
classical and quantum operatorial superalgebras on the supertorus TN have been
constructed manifestly (their structure constants have been calculated). Second, their
non-trivial central extensions have been obtained and the manifest expressions
for the cocycles are presented. It turns out that for even N 2d-independent central
elements are commuting, but for odd N they are anti-commuting. Third, it has
been shown that for special values of the deformation parameters, the infinite-
dimensional operatorial quantum superalgebras on the supertorus T%V can be
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reduced to the classical finite-dimensional superalgebras A(M | M) or Q(M) (for
even or odd N respectively, where N > 0). These results generalize to the case of
arbitrary N with the results of Refs. 1-4, 6, 7 for non-supersymmetric case N = 0,
and of Refs. 4, 7 and 8 for N = 1 supersymmetric case (in these references, mainly
~ thecased = 1, two-dimensional torus, has been studied). Note also that concerning
the N =1 case, to our knowledge, the isomorphism of (33) to Q(M) was not pointed
out earlier and the cocycle formula in terms of integrals was not presented.
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