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1. INTRODUCTION

In the papers [1,2] we developed the superconformal theory of higher spins in
three-dimensional space-time. Our construction was based on the infinite-dimen-
sional superalgebra shsc(N|3), which generalizes the usual conformal superalgebra
osp(N|4) in the space-time with D =2 + 1. The aim of this work is to construct the
infinite-dimensional generalizations of conformal superalgebras SU(2,2|N) in
D=3+1 [4]. The gauge theories corresponding to these superalgebras describe all
spins from 1 to infinity and include, in particular, the usual conformal supergravity.
As it was mentioned in Refs. [1-3], these theories can give a consistent description
of interaction of the gauge fields of higher spins with the Weyl gravity. A\

Our construction is based on the method of operatot realizations of Lie super-
algebras [5, 6] and on the theory of symbols of operators 6, 8].

Using the method of operator realizations we construct a series of infinite-dimen-
sional complex superalgebras igl(M|N; C) (i-infinite-dimensional), generalizing a
series of superalgebras gl(M| N; C). Factorising these superalgebras with respect to
their centre (M # N ), we obtain a series of superalgebras isl*{M|N; C), generaliz-
ing the series sl(M|N;C). These superalgebras contain (with infinite degeneracy)
all irreducible representations sl(M|N;C) with signatures, proportional to the
signature of the adjoint representation st(M | N; C). The factoralgebras isl(M|N; C)
of algebras isl®(M | N; C) with respect to their radical contain all such representa-
tions only once and are simple. They directly generalize the series of simple
(N # M) superalgebras sl(M|N; C). These results, combined with the results of
Refs. [6, 12] are represented in Table L.

The superalgebras shs’ and isl have a common structure. They are simple and
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TABLE 1
Finite- Infinite-
dimensional complex dimensional
superalgebras generalizations Superalgebra
osp(N|M;C) shs'E(N|M; C) Simple
gl{M|N;C) igl(M|N;C) Not simple
si(M|N; C) isI°(M|N;C) Not simple
isl”(M|N;C) Not simple, n=2, 3, ...
isS(M|N;C) simple, when M # N

contain all irreducible representations, with signature proportional to the signature
of the adjoint representation of maximal finite-dimensional subalgebra osp or sl,
only once. It is also interesting to find similar infinite-dimensional Lie algebras and
superalgebras for all Cartan series of Lie algebras and superalgebras and for excep-
tional types of Lie superalgebras and to obtain their complete classification.

The corresponding real forms of superalgebras isl*(4|N;C) and isl(4|N; C)
generalize the conformal superalgebras SU(2, 2| N).

However, in order to construct gauge theories, it is necessary to introduce in
these superalgebras a special basis, in which all the generators have definite
Lorenzian sl(2; C) structure, su(N)-structure and fixed conformal and chiral
weights (in this basis the operators of chirality and dilatations are diagonal). We
present a detailed construction of such a basis (we call it superconformal) for N=1
superalgebras isu®(2, 2| 1) and isu(2, 2|1). In the following we denote the algebras
isu®(2,2)1) and isu(2,2|1) as shsc*(4|1) and shsc(4|1) (super higher-spin
conformal).

The structure coefficients of superalgebras shsc‘®)(4}1) are calculated by us in
the superconformal basis. The gauge field, corresponding to the shsc®(4}1),
contains an infinite number higher-spin conformal supermultiplets (s, s—4, s—1)
with highest spin s=2, 3, ..., 0. The gauge field of shsc(4|1) (unlike the case of
shsc™(4|1)) contains only one conformal supermultiplet for every higher spin. The
curvatures of shsc(®)(4|1) generalize the curvatures of usual conformal super-
gravity [4, 9, 10] to the case of all higher spins.

The results of this paper and of Refs. [1-3, 6, 11-14] are illustrated in the
Table II.

The global algebra and its localization in the theory of higher spins in anti-
de Sitter space-time were obtained in [6, 11-14].

In the papers [1, 2] the superconformal algebra of higher spins and its localiza-
tion were constructed in D=2+ 1. In Ref. [3] we briefly consider the conformal
theory of higher spins in D =3 + 1. The superconformal theory of higher spins in
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TABLE 11
Algebras of Infinite-dimensional generalizatibns of
supergravity supergravity algebras and corresponding
theories gauge theories
adS ,-supergravity adS, higher-spin theory
osp(N|4) . shsZ(N|4)
D =4 conformal supergravity Conformal theories of higher spins in D =4,
SU(2,2|N) shsc™(4|N), shsc(4|N)
adS,-supergravity Theory of higher spins in adS;,
osp(M|2) @ osp(N|2) shsf(N|2) @ shsZ(M|2) '
D =3 conformal supergravity Conformal theories of higher spinin D=3,
osp(N|4) shsc(N|3)

D=3+1 based on the global superconformal algebra, proposed in the present
paper, will be considered by us in detail in another paper.

Such superconformal theories are interesting due to a number of reasons:

First, as was already mentioned in Ref. [1], it is possible that one could
construct a consistent interaction of higher spins among themselves and with Weyl
gravity in all orders in interaction due to-the expected closure of the gauge algebra
(in analogy to conformal supergravity). The extended superconformal theories of all
spins would be particulary interesting (see Section 8), if it would be possible to
realize a variant of spontaneous breaking of conformal symmetry, leading-ta
Einstein gravity, interacting with massive higher spins, and therefore to reveal a
connection with the string theory. .

Another possible variant of the spontaneous breaking of conformal symmetry can
lead to the generation of a cosmological constant, with the transformation of the
conformal theory of higher spins into adS,-theory. In this case in the corresponding
adS,-theory there arises a full compleat of auxiliary fields, that are necessary for the
closure of gauge algebra and which permit progress in the construction of the full
interaction of theories [11-14] and in the proof of its invariance.

To conclude, let us discuss the strategy for constructing higher spin conformal
superalgebras. Recall first the strategy for constructing the adS, superalgebra
shsZ(N|4) which appeared in [6].

The first step is to choose a convenient operator realization of the finite-dimen-
sional subalgebra osp(N|4). To do that, we choose the generating elements

qr =rg (9., 95]1=2ie.g, [re, ) =2igy,, (1.1)

Ui=v, (¥} =26,  ij=1..N, (12)
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with « and & as two-component spinor indices. Second-order polynomials! in these
generating elements- furnish the osp(¥N|4) Lie superalgebra with respect to the
commutator,

[4,B}=A-B—(—1)*5p. 4, ' (13)

where the Grassmann parity of quadratic operators is defined by
A(=g, =, ¥)= (=1 A(g, r, ¥) (1.4)

and the dot denotes the associative operator multiplication.

The next step is to consider polynomials of arbitrary even degree in the
generating elements. They furnish the associative algebra aqZ(N|4; C) (associative
quantum). Introducing in ag#(N|4; C) a Lie superalgebra structure by the relation
(1.3), and extracting the real form we get an infinite-dimensional superalgebra
shs®(N|4) [6]. The generators of shsZ(N|4) carry a higher spin adS,-superalgebra
osp(XN|4) representation, while the corresponding gauge fields describe higher spins
in adS,. Explicit expressions for the shs“(N|4) curvatures are easily obtained
within the theory of symbols of operators, using convenient formulae for the muiti-
plication of Weyl symbols.

In the present work an analogous method is used to construct a higher-spin
extension of the SU(2, 2| N) conformal superalgebra. Similarly to the adS,-case, we
start with an operator realization of SU(2, 2| N). Note that the su and osp super-
algebras are of different natures and thus have different operator realizations. The
osp superalgebra is furnished by all polynomials which are quadratic in the
Heisenberg operators, whereas the conformal superalgebra is furnished by those
operators which commute with the “particle number” operator. To realize the
SU(2, 2| N) algebra, a convenient choice of generating elements is

[a% a5]1=26%, [a, a’1=26%,
{a;, 0t } =20, i,j=1,.., N, (1.5)
(@)t =a% (@g)* =az ()T =a”. (1.6)

All operators quadratic in (a,4,a, %) furnish osp(2N|8), whereas those
commuting with the “particle number” operator

T=a,a*+aay+a*a (1.7)

(excluding the operator (1.7) itself) form a subalgebra in osp(2N|8) which is
isomorphic to SU(2, 2| N).

Our next step is to consider of higher order polynomials in the generating
elements. The associative algebra of those polynomials in the generating elements

L All operators have the Weyl (symmetric) ordering,
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(1.5), (1.6) that commute with the “particle number” operator is called
agpc(4| N; C) (associative quantum particle conservation). The Grassmann parity
in agpc(4|N; C) is defined as

A(—a, —a,0,0%)=(-1)"* A(a,d,a,a™). (1.8)

The real Lie superalgebra structure in the associative algebra aqpc(4|N;C) is
introduced with the help of the commutator (1.3) and antihermiticity condition
A+ = —A4 with Hermitian conjugation (1.6). We denote this superalgebra as
iu(2, 2| N) (infinite-dimensional unitary).

To construct a gauge theory, however, it is necessary to introduce in iu(2, 2| N )
a particular superconformal basis, in which iu(2, 2| N) would be explicitly decom-
posed into SU(2, 2| N} irreducible representations.

To construct this basis, the standard technique of the representation theory of
Lie algebras is to be used. One finds all the highest vectors with maximal conformal
weight and acts on them with operators which lower conformal weight. Then
irreducible spinor basis is obtained through the use of spinorial Clebsch-Gordan
sl(2; C) coefficients. The curvatures are calculated in the superconformal basis with
the help of the known structure coefficients for the three-dimensional conformal
superalgebra shsc(N|3).

Factorising the iu(2, 2| N) with respect to its centre, generated by powers of the
“particle number” operator (1.7), one obtains the superalgebra shsc®(4|N). The
shsc™(4| N) superalgebra contains a family of ideals, which are embedded into each
other. Factoring out these ideals, we obtain a family of factoralgebras shsc™(4|N),
n=1,2, .., . They contain conformal supermultiplets with multiplicity equal to n.
The superalgebra shsc)(4| N), denoted simply as shsc(4|N ), is simple (for N #4)
and contains all conformal supermultiplets only once.

All the above superalgebras are candidates for the role of a physical conformal - -
higher-spin symmetry.

The next problem is the localization of the proposed superalgebras and the
construction of a complete Lagrangian. It is only at this stage that one will single
out a higher-spin conformal superalgebra which will allow one to construct a
gauge-invariant interacting higher-spin theory.

This paper is organized as follows: In Section 2 we construct the complex super-
algebras igl(M| N; C), isl*(M|N; C), and isl(M|N; C) and analyze their structure.
In Section 3 we introduce a convinient for our purposes operator realization of
SU(2,2|1). In Section4 we consider the representations of conformal algebra
SU(2, 2) with higher spins (Bose-case) and introduce a conformal basis in the
representation spaces of SU(2,2). In Section 5, using the results of Section 4, we
construct the algebras hsc®(4) and hsc(4) and discuss their properties. In Section 6
we generalize the results of Section 4 on the supercase and introduce a superconfor-
mal basis in the representation spaces of SU(2, 2|1). In Section 7 we construct the
superalgebras shsc™(4|1) and shsc(4/1), which generalize in the supercase the
algebras hsc(®)(4), constructed in Section 5, and study their structure. In Section 8
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we briefly discuss the extended superalgebras shsc®(4|{N) and shsc(4|N) and
outline the possible perspectives of their application. In Section 9 the higher-spin
conformal superalgebras shsc(’(4|N) are considered.

At the end of the paper we place several appendices, in which we describe some
calculations, and we also give a brief description of the results of Refs. [1, 2] that
are essential for the construction of the conformal superalgebra of higher spins in
D=3+1.

2. INFINITE-DIMENSIONAL COMPLEX LIE SUPERALGEBRAS
igl(M|N;C), isI*(M|N;C), aNpD isHM|N; C)

Let us consider the Heisenberg-Clifford superalgebra
[dA’ dB}=2CA,B’ A, B=1,..., N+2M, (2-1)

‘where d, are the generating elements with grassmanian parity &(d,)=¢, and
nondegenerate orthosymplectic metric

Cus=—(—-1D)**Cpy, (A—-(=1)*"")C,5=0, (22)

where 2M and N is correspondingly the number of even and odd generating
elements. The nondegenerate orthosymplectic metric can be chosen in the form

(2.3)
where
0 i
g = 4
! (24)
10 )

I= N, [-unit matrix. (2.5)

0 1

N

We denote by a, the symbols of operators 4, with e(a,)=¢&(d,)=¢, and consider
the associative algebra of Weyl symbols of the operators, polynomial with respect
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to a,, aq(N|2M;C) (associative quantum) [6]. The associative product of the
Weyl symbols is given by the formula

Ax B=Aexp(d)B, (2.6)

where 4 is a differential operator, acting simultaneously to the left and to the right,
and

. 0 l
da, *%oday (2.7)
The natural basis in aq(N|2M; C) is given by the monomials
1
TAI_._A,I:maAI---aAn, n=0,1,2,.. (2.8)
The basis monomials (2.8) are symmetric:
TAIA..A,.:Sym(TAl...An)- (29)

The generalized symmetrization is defined with the help of symmetrizators of the
form [87:

L J d
' n!S’;:mﬁ:=(E...&I_Aah...aAJ (2.10)
by the formula
SYM(T 4, ) =S4 4 Ty 45 s (2.11)

In the following the symmetrizations in the expressions of the type of
Sym(X 4, ... 4, 5,...5,,..) is performed separately with respect to all groups of indices
denoted by the same letters.

The multiplication law (2.6) in this basis takes the form

< (n+m—2K)
Taroan* T 0= L T ()

X Sym(CAmBl Tt CAn—k-H»Bk TAl---An—kBk+1 "'Bm)' (212)

In the following we shall consider an algebra aq®(N|2M; C) generated by the
elements 4 €aq(N|2M; C) such that

Ala )= A(—a,) (2.13)
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Let us define in the algebra aq®(N|2M; C) the structure of Lie superaigebra by the
relation?

[A,BY=A*xB—(—1)"@e® By 4 (2.14)

where the grassmanian parity of the basis monomials is given by the formula

s(TAIA.AAn)=8Al...An= Z sAi' (2.15)
=1

Then the commutation relations in this algebra take the form

(n+m—2k)
[TAl cAp> TB, B,,,} 22k|(n k)|( )!

X Sym(CAn,Bx T CAn-kH,Bk TAl cAp—kBrsr-- ) (2 16)

This superalgebra coincides with the superalgebra shs&(N|2M ; C), first obtained in
Ref. [6]. The quadratic elements with the basis 7, ,, in shs“(N|2M; C) form the
maximal finite-dimensional subalgebra, isomorphic to osp(N|2M;C) with the
commutator?

5(lk +1];)

[TAlAz’ TB[B;} =4Sym(CAzﬂl TA[B;)‘ (217)

The series of infinite-dimentional superalgebras shs“(N|2M;C) generalizes the
series osp(N|2M; C).
Let us consider the special choice of the commutation relations (2.1),

[4,,a%} =208, e(d,)=e(@)=¢,,

(2.18)
A B=1,. ., N+ M.

The associative product of symbols has the form (2.6), where

58 33
da 0a Oa da (2.19)

a-a=a‘a,.
Let us consider the set of elements 4 € aq£(2N|2M ; C) such that*

[T,4]=0, T=a-a, (2.20)

2 The commutators of the Weyl symbols is defined as in (2.14) everywhere.
* Let us write (2.17), for example, for the case of T, =34, a,, &,=1, {a;,a;} = 26;. From our defini-
tions it follows that

[T'I'z’ 1112] 6'1/2 i2h 6'1}|T12+61211 UF;] 5111'1T"u'1’

. 4
i.e., the usual commutation relations of SO(N).

4 For the definition of the commutators of symbols see (2.14), (2.6).



260 FRADKIN AND LINETSKY

where T is a symbol of the “particle number” operator. This set evidently forms a
subalgebra in aq®(2N|2M; C). Let us denote it by agpc(N|M;C) (pc = particle
conservation). It is natural to choose the basis in this algebra in the form

| . _
TA"”A",Bl---B,FZ—(F)za“ -a'ag --ap,. (2.21)
The grassmanian parity of monomials (2.21) is defined by the relation
g(T4 LB =ERE= Z (e%+e5). (2.22)

i=1

With respect to the commutator (2.14) agpc forms a Lie superalgebra, which we
denote by igl(M | N; C) (infinite-dimensional general linear).

The quadratic elements with the basis T# z=a%ap, form a finite-dimensional
subalgebra in igl(M|N;C), isomorphic to the superalgebra gl(M|N;C) (this
explains our notation). The commutation relations in igl(M|N;C) are easily
obtained by using (2.6), (2.19), and (2.14),

(T4 4% g TV o py}
(=D)"((k +[—n—m)!)?

Z,,.m'(k M k=)l I—n) (I—m)! ln+m+1],)
x Sym((—1 ) a o e tlo, " G- fkomes
' X GG TAAnCnt G e Der D) (2.23)
Op o =000 (224}
The commutation relations of gl(M|N; C), -
[T*5 T} =057 p— (=155 65T, (2.25)

follow from the general formula (2.23). Thus we have constructed the infinite-
dimensional generalization of the series of superalgebras gl(M|N; C).
If we introduce the Hermitian conjugation,

(a)*=a*, (a")*=a, (2.26)

and extract the real form of igl(M|N; C) according to the rule
At = —A, AeiglM|N;C), (2.27)

we obtain an algebra iu(M|N; C).
Let us now construct the infinite-dimensional generalization of the superalgebra
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sli(M|N; C), which is simple when M # N. The superalgebra sl(M | N; C) is formed
by the elements having the null supertrace,

~ _ 1 _
T,=a,a®— 7 %ala-a),
(2.28)

ste(F 2 =Y (-1 F,1=0.

In the case of infinite-dimensional algebras the situation is a little more com-
plicated. To proceed further we need to introduce some notations and definitions.
The infinite-dimensional Lie superalgebra is called:

(a) simple, if it does not contain ideals besides itself and zero;
(b) solvable, if it has the sequence of ideals

g8=8O 812 (2.29)

such that the factoralgebra g./g, ., are commutative. In the finite-dimensional case
the sequence of ideals (2.29) can be chosen to be finite, which generally speaking
cannot be done in the infinite-dimensional case.

The maximal solvable ideal, in analogy to the finite-dimensionnal case, is called
the radical R of algebra g (R(g)). However, in the infinite-dimensional case the
radical is not always unique. For every infinite-dimensional algebra g the algebra
S=g/R(g) is semi simple.

A subalgebra L < g is called a Levi subalgebra, if g decomposes into the semi-
direct sum

g=R(g)®L:[L,L]=L, [R R]=R, [R L]cR (2.30)

The algebras S and L (if the latter exists and R(g) is unique) are naturally
isomorphic. In the finite-dimensional case there exists a Levi theorem on decom-
position, which states that in any finite-dimensional Lie algebra on R or C there
exists a Levi subalgebra. However this theorem generally speaking does not hold in
the infinite-dimensional case. For the infinite-dimensional Lie algebra it is possible
that the Levi subalgebra does not exist.

Bearing in mind all this let us consider the superalgebra igl(M|N;C) when
M # N. Due to its construction this superalgebra contains a centre, generated by
the elements of the form

T,=(T)"=(a-a)", n=0,1,2, ... (2.31)

One can show, that in analogy to the decomposition

g(M|N;C)=sl(M|N;C)Degl(1;C), (2.32)
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there exists a decomposition of igl into the direct sum

igl(MiN;«:)=is1°°(M|N;C)@(é% gl(l;C)n), (2.33)
n=0
where
iSl°°(M|N;C)=igl(M|N;C)/<é gl(l;C)n) (2.34)
n=0

and gl(1; C), are generated by T,.

However, unlike the superalgebra sl{(M|N; C), the superalgebra isI*(M|N;C)is
not simple. We shall consider isl®(M|N;C) later, and now we shall prove the
decomposition (2.33), i.e., the triviality of the central extension of is*(M|N;C) to
igM|N;C) by the elements T,. Let us mention, that the superalgebra
ig(M|N; C) has an invariant bilinear form

(4, B)=tr(4 * B), (2.35)
tH(A(Z))=A0), Z=(a" ay), (2.36)

where A(Z), B(Z) are the elements of the Grassmann shell of ig(M|N; C).
The invariance property of the bilinear form is

([4, B], C)+ (4, [C, B])=0. (2.37)

Triviality of the central extension of isl*(M|N; C) to igi(M|N; C) is equivalent to -
the condition

(L4, B], T,) =0 | (238)

for any 4 and B.
By force of the relations (2.37) and the commutavity of T, with all elements of
the igl(M|N; C), we have

([4, B), T, )= —(A4, [T,, B])=0. (2.39)

Therefore, the elements T, do not appear in the right-hand side of the commutators
and the central extension is trivial.

Let us now consider the superalgebras isl®(M|N;C). The superalgebra
sl(M|N; C) is a maximal finite-dimensional subalgebra of isl(M|N; C).

In order to find the radical of a superalgebra isl®(M|N; C), we decompose in
into irreducible representation spaces with respect to sl(M|N;C). The corre-
sponding basis can be chosen as follows:
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(")]z‘Al,..Am,B‘“‘Bm= TAI...AM’BIH‘BM *T* EEER I‘, (240)

T=a-a, n=0,1,..m=1,2, ..,

1

YTy oy a, B2 B —1)24m =, (241)
A
Here %Al__, 4;, 218 are the supertraceless parts of the elements of the form
1 _ -
TA1 _,_AM,BI B W Ay - aAmaB‘ - @Bm, (2.42)

In the superalgebra isl”(M|N; C) there exists a sequence of ideals
T ={WF, BB k=nn+l,.,m=12 .} (2.43)
From (2.20), (2.40), we have
[T", Tm} c Tn+m,
(2.44)
SI°(M|N;C)=T">T!'> ...

The maximal solvable ideal in this sequence is T

Let us consider the set of the elements® 7°\ 7. This set is not a subalgebra. It
can be proven by calculating the supertrace with respect to a pair of indices of the
commutator

[, &}t Amp .5, at m>1, (2.45)

where

_ A Am 0) F BB,
51(2)—261(12) ’Bl"‘Bm( TA1-~~Am, ' "
m

While the decomposition coefficients of ¢, ,, are supertraceless, the coefficients of
[, &,} are not. The commutation relations isl®(M|N; C) are

[DF,, ™F) =Y £ n, m n+m+kynrm+oF (2.46)
k

where A(B) are the collection indices of 7T, In the right-hand side of the com-
mutator (2.46) at n=m =0 are the elements )T with k> 0.

The set T°\T"! does not contain nonzero ideals. Thus the ideal T is a radical of
is1°(M|N;C) and a set isl®(M|N; C)\R(isl*(M|N; C)) is not a subalgebra is
isl°(M | N; C). The simple algebra,

is{M|N; C)=isl®(M|N; C)/R(isl*(M|N; C)) (247)
is a infinite-dimensional generalization of a simple algebra sl(M|N;C) (N#M).

* The set 4\B, where B < A, consist of the elements ae 4 but a¢B.
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When M = N the radical also contains, along with the elements of the form 7= aa,
elements of the form

a-a=y (—1) a'a,. (2.48)

However, here we shall not discuss this case in detail.
The superalgebra isl®(M|N;C) contains a subalgebra of loop algebra for
s{M|N;C),
[T, ™Tp}=fS " Tc, nm=0,1, .., (2.49)

where A, B, C are the indices in the adjoint representation of sl(M|N;C) and 1S ,
are the structure constants of sl

Let us notice that there exists a contraction of the superalgebra isI*(M|N;C) to
a subalgebra of the loop algebra of isl(M|N; C) with generators "T,, n>0. This
contraction is obtained by taking the limit A — 0 in the commutation relations
(2.46) in the basis

OF gy B AT O B (2.50)

1-

In conclusion it should be mentioned that T!' is not the unique radical in
isl®(M|N; C). There exists a whole one-parameter family of radicals T, which are
generated by elements d@-a— p1, where peC, and 1 is the unit. Correspondingly,
we have a one-parameter family of factoralgebras isl,(M|N;C), and evidently
isl(M|N; C) ~islo(M | N; C).

. 3. OPERATOR REALIZATION OF THE SUPERCONFORMAL ALGEBRA SU(2,2|1)
In this section we consider an operatorial realization of SU(2,2(1) that is

convenient for our purposes in terms of two-component spinors.
The generating elements can be conveniently chosen as follows®:

a=(;Z ) a=(a,, a®), ela)=e@)=0, (3.1)
B8 -
[a% a,]1=263,  [a, @’]1=26%, (3.2)
{a,a*} =2, ela)=¢e(a*)=1. (33)
The Hermitian conjugation is defined by
aa+=dd’ ﬁa+=aa‘z’ ao’:+=_
( _) (a.) (a;) (3.4)
(@)*=a%, (a7)" =q (@) " =a™

In formulas (3.1)-(3.4), a is a Dirac spinor, 2=a%y, is a Dirac conjugate spinor,
and o and a* are the generating elements of the Clifford algebra.

¢ Let us mention, that the sets of generating elements (a*, a 4> @) and (a,, a* a*) are the supertwistor
and its dual.



CONFORMAL SUPERALGEBRAS 265

Let (a, 4, «, 2 ¥ ) now be the symbols of the operators in (3.1)-(3.4) (in the following
we work only with symbols). The multiplication of the Weyl symbols is given by
the formula (2.6), where operator (2.7) in this case has the form’

v 2 * =~ = 08 &7
= o By _ Ay _ gy, - 4 Y Y
A=0,0"+0%8,—08%0,— 0,0 * o2 3 (3.5)

If at least one of the symbols 4 or B is of the second order with respect to
generating elements, the commutator (2.14) reduces to the Poisson bracket

[4,B}=AAB— (=1 *®'B f4=24 AB. (3.6)
The symbol of the “particle number” operator in this case has the form
T=&-a+a+a=§1a"+ﬁ5a5+a+a. (3.7)

The symbols of all generators, commuting with T, are presentable as linear
combinations of basis symbols:

2Ma(2) = —daaa, 2Mﬁ(2) = dﬁaﬁ, (3.8a)
2iPaﬁ=dﬁaa, 2iKaﬁ=&aaB, (38b)
4D =aysa=a,a* —d’ay, (3.8¢)

20.=a,0", 2Q,=a,a, 28, =a,q, 2Sp=aza”, (3.8d)

2U=§a-a+ia+a. (3.8¢)

These symbols generate an algebra SU(2, 2| 1) with nonzero commutators (3.6)

[Ma(2)’ Mv(Z)] = 2817M1y’ [Ma'(2)s Mﬁ(z)] = stﬁMﬁ;, (3.93)
PY]_ Py Pvﬁ)] = (Pvﬁ)
N R S S
[PaB’Kwi]=8¢v£BﬁD+SzyMﬁp-+3ﬁpMay, (3.9¢c)
P!B _ —Paﬁ)
[2(e2)]-() (359)
{Q., Qpt =Py, {8, Sp}=iK,y, (3.9¢)
{Ql’ Sﬂ} = _(Maﬁ + aaﬂ(%D —il)), (3.91)
{Qa Sp}=(Myy+e,(3D+ 1)), (3.92)

7 The derivatives are defined by the relations &, = é/éa*, £* = é/od,, 6" = djdag, 6,= 8/6ab, 8,4 = &,
&a,=6?, dbay =54, 5,a° =3,
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Ly, Q(;)] %zQ( )» [u, S( )]_ 41S( y (3.9i)
[Pmﬁ’ Sy] laayQﬁ’ [Paﬂi' S ]_ _lgﬁanz’ (39.])
(K, Q,1=1ie,, Sy, [Kup, @Qs1= —igy, S, (3.9k)

Evidently, (P, K, M, D, U, Q, S) are the generators of translations, conformal
boosts, Lorentz transformations, dilatations, chiral U(1) transformations, super-
symmetries, and special conformal supersymmetries.

The differential operators of the form

A=244, (3.10)

where A are the symbols (3.8), form an adjoint representatioh of SU(2,2|1). The
explicit expressions for these operators are

iPy=a,0,—a,8y, iK,=0,0,—0a40,, (3.11a)
Mypy=a,0,~3,0,, Myp=0,0,—a;0,, (3.11b)
2D =(a,0%— a%, + ayd® — 3%5,), (3.11c)
ol s an g gy e O ﬁ)

U 4(a,,5 a*d,—ayd* +a 5B)+z(oc 3 %52/ (3.11d)

O,=a*d, O J,=a O _p 3.11
+a“6 B‘“ﬁai_“ F (3.11e)

§.—a, - 4 S,=a*d O 3.11f
' a_au_aF_a o> Sﬁ—a B+aﬂa ( . )

From the commutation relations of SU(2, 2| 1) we see, that in the basis (3.8) D and
U are diagonal operators, as all generators have definite conformal ¢ and chiral u
weights:

Das*y=ca¥,  T(A4°*)=3iud"", (3.12)

where A“¥ are the basis elements (3.8).

The operators § and J correspondingly raise and lower the conformal welght
at 1. The operators K and P correspondingly raise and lower the conformal weight
at 1.

4. THE REPRESENTATIONS OF SU(2, 2} wiTH HIGHER SPINS (Bose CasE)
In this section we consider the representation of SU(2, 2) in the linear space V,

which is the real form of aqpc(0]4; C) (as linear space), obtained with the help of
Hermitian conjugation (3.4).
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The operators of representation of SU(2, 2) in V¥ act according to a formula
(4, T1=A(T), TeV, (4.1)

where A are the operators (3.11).

Let us decompose ¥ into the irreducible representations spaces (irrepses) of
SU(2, 2) and in each of them introduce the conformal basis, in which the irreps of
SU(2, 2) are explicitly decomposed into the irrepses of the subalgebras

SU(2,2) - sl(2; C)@so(l, 1), (42)

where sl(2; C) is a Lorentz algebra and so(1, 1) is generated by operator D. In such
a basis all the generators (and the gauge fields corresponding to them) will have an
explicit Lorenzian structure and definite conformal (Weyl) weight.

In order to decompose V into the irrepses of SU(2, 2) in the space V let us find
all the highest vectors with a maximal conformal weight (as the operators from
SU(2, 2) do not change the degree of homogeneity of the polynomials with respect
to the generating elements, all the irrepses are finite-dimensional and, therefore,
have a highest vector). The highest vectors of SU(2, 2) must satisfy the equalities

K (T*)=0, D(T*)=sT* (4.3)

(K is the raising operator). :
The general solution of (4.3) for fixed s=0,1,.. is a linear combination of
vectors of a form

("’T;m, i) = a8 (1), n=0,1, .., (4.4)

where T=a-a (T=T(3.7)|,_,, because we consider purely Bose case).

Thus we see, that the space V contains with the infinite multiplicity all the
irrepses of SU(2, 2) with the highest weight (s, 5, 0), where in the signature (s, {+ j,
{— j), 5 15 a highest conformal weight, and (/, j}—a Lorenzian signature of a highest
vector with a maximal conformal weight.

The complete basis in the representation spaces is obtained from highest vectors
(4.4) by the action of operators P'zﬁ, which lower the conformal weight.

To obtain a sl(2; C)-irreducible basis it is necessary to decompose the expression
obtained into irreducible multispinors with the help of spinorial Clebsch—-Gordan
(C-G) coefficients (see Appendix B of this paper and the more detailed Appendix
of the work [2]).

The resulting sl(2; C)-irreducible conformal basis in a space ¥ has a form

3 ~ (s),7(s —¢) & $(s)é(s— )
(n)Ta(l-(szli ﬁ(zj)~Ca(21),p shy(s—e¢ Cﬁ(Zj), 5),0(s—c

X Py5 Tt P‘yﬁ ((M)T;(s),f(s)L (4’5)

§—C

where C are the spinorial C-G coefficients of sl(2; C).
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Performing the calculations in the right-hand side of (4.5), we obtain (details of
the calculation are presented in Appendix D)

(m)ygis.c)
Tatn.pen
c—s—1 Z (_1)s2—n—c/2c(s+n——1+j+1)/2,(s+n+l—j+1)/2,s+1

U+j+s2—s1+ 12,0+ j+s5,—5:+1)/2,0+j+1
st+s2=s5+n

(51,52,¢/2, ¢/2) 1
X Tosivaan > S1:52=0,3, 1, ., (4.6)

where C are the C—G coefficients of SU(2) and

T(Sl,sz.ﬁm,q) _ 1
a(20)02) T N
S+ et (s — ) sz + )l (52— €2)!
x Coar Yerredplsi—enC oy d(s2+ c2).S(s2—c2)

x 5v(s1 +en)@p(s1 - cl)aé(sz'— ) @é(s2+ c2)? (4.7)
(s1.52,¢1,¢2) __ gr(s1,c1)  Ar(s2.€2)
Ta(21).ﬁ(2j) - Ta(2l) 'Tﬁ(2j) ’ (4'8)

Let us notice, that the multipliers in (4.8) are the generators of the two algebras
shsc(1]3). In the expression (4.6) the normalization is chosen in such a way, that
with respect to a bilinear form in V

(4, B)=tr(A » B)= (A4 * B)(0), (4.9)
the conformal basis is normalized

(n)yg(s.c) (n")y(s’,c’)
‘ ( Ta(ZI).ﬂ(Zj), Tv(21')-ﬁ(2j'))

1 I+5+1
=5, 10008, 584,00, - BaanpanEpan. - (4.10)

The formula (4.10) follows from the orthogonality relations for C-G coefficients and
from the orthonormality of the basis (4.7), (4.8) with respect to (4.9).

Therefore, we have introduced in V¥ the conformal basis T 4o, Where
s=0, 1,.. defines a representation of SU(2,2) with a signature (s, s, 0),
n+1=1,2, .. numerates identical representations, c= —s, —s+1, .., § is a confor-
mal weight of the generators and /, j=0, Lo hLjzle2, I+j<s, I+¢/2 and
J+¢/2 are integers.

The conformal basis (as a consequence of the index (n)) is defined nonunically.
The transformations of the form

Fa(s,¢) _ A (s,¢)
W& sy =2 Cabl(s) ™ T o, pary (4.11)
m

with some matrix C,, ,, transforming one conformal basis into another.
The Hermitian conjugation (3.4) acts in the basis (4.9) according to the formula

(n)y(s,c) + — __(n)s.o)
(" Ta(zl).B(zn) = - /35(23'),5‘(2”- (4.12)
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5. THE ALGEBRAS hsc*(4) AND hsc(4)

In this section we shall construct an algebra isu®(2,2), generalizing the
conformal algebra SU(2, 2). The gauge fields of isu®(2, 2} or hsc*(4), as we shall
denote it in the following, have a form

_ 21), (%) (n)pls.c)
w,= Y @l 180G o B (5.1)

n,s,¢4,j

(5.1a)

The summation parameters run through all possible range of values (see above,
s=1,2,..).
This gauge fields generalize the fields of the Weyl gravity for the case of higher spins.
The following terms correspond to the Weyl gravity (conformal multiplet of
spin 2):
w;V= le',l)a,B Ta(z,lkl) + wL{’o)a(Z)Tﬁi{)’)

, (1,0) s s ,—1)a_ 1,-1
+ OB TLOS 4 O WO g o —Daibpil =D (5.2)
where we have omitted the index (0) in “w, and ©’T. Comparing the expression

(4.6) for the generators hsc*(4) with Ex. (3 8) for the generators of conformal
group, we obtain the relation

(Kaﬁs Ma(Z), Mﬁ(z)’ —D, Pzﬁ)
= (T2 T T s T oy ™) (53)

and, correspondingly, to the fields

(fu,aﬂ’ WDy,a2)s Dy g2y —b en.aﬁ)

(1,1) (1,0) (1,0) (1,0) (1 —1)
O, 2(2)» Py, p(2)> P )- (5.4)

=(wu,1,ﬂs

Now we can give explicit formulae for the curvatures of hsc*(4)

Ruv = a[;.tcuv] + [CU#, wv]’ (S.Sa)
Rl =0p0h+5c0jo), (5.5b)

where the commutator is defined by (2.14). The expresions for structure coefficients
of hsc™(4) follow from the formulas for the structure coefficients of shsc(1|3) and
from expressions (4.6)-(4.8) for the conformal basis (see [1,2] and Appendix C of
this paper).
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The final expression for the curvature of hsc*(4) are

IR Y b = a(['ﬁw(vs',cz(zt),ﬂ(zn
+26(c'+c”—c)5(2m—l’—l”+1)5(2r—l”+l’—l)5(2t—l'+l"—l)

x02p—j —j"+j)0Q2q—j"—j+j)0(2k+j"—j—J')
x8(|s'+s5"+s5+n+n +n"+1|,)

n/ s! CV II jl
o 55—t " (7Y am)

) (55€") " #2p)
W 2 2y @m), Brsp) P a(ar \

” ” " ” >
n s " 1" j 42a)

ns cl j

(5.6)
where the set of structure coefficients takes the form
nos, ¢ Lo
n, s ¢ Lo Ja
ny s3 ¢ I3 Jjs
3
_ C(S,-+n,-——l,‘+j,‘+1)/2,(si+n.'+1,'—j,'+1)/2,8,‘-0—1
- Z: I] Uit Ji+ st —si+ D2, b+ ji+si—si + 1)/2,5i+ i+ 1
si+sf =si+nm \i=1
s\ sy sh\ /s1 s5 s3
¢, ¢y C ¢, €3 C
w2 3y 2 23 (5.7)

2 2 22 2 2)
ll l2 13 jl jz j3
S:‘a s;I=09 %’ 19 eey i=1, 2’ 3

and
§1 852 83
€ € C3
L L L

are the structure coefficients of shsc(1]|3) (Appendix C).
In the derivation of (5.6) we used the symmetry property of the coefficients (5.7),

D1 D2
D, =(“1)Z?=1(si+"i+li+ji) D, D;=(n;, 8 ¢ lis Jis (5.8)
D, D,

which follow from the symmetry property of the structure coefficients of shsc(1]3)
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(C.6). Between the well-known expressions for the curvatures of conformal gravity
[4] and our expressions (5.6) the following correspondence takes place:

(Rp,0p(K)s R,y o2)(M), R,y po)(M), R, (D), R, ,4(P))
~(RWD RO RL‘;‘%’(Z),R(""’ R(li—};)_ (5.9)

wv,a, fr v a(2) w2 Doyva,

Here it is assumed that in the correspondent expressions for hsc*(4) curvature
“ep=0 when n>0 or s>1. The algebra hsc®(4), as its complexification
is1°(4; C), is not simple. In Section 2 we considered the construction of simple
algebras isl(M | N; C), which are the factoralgebras of isl* (M| N; C) with respect to
a radical. Here we present a detailed construction of a simple algebra hsc(4) ~
isu(2, 2) = hsc®(4)/R(hsc>=(4)). Let us introduce in hsc*(4) a basis, analogous to
that of (2.31) for the general complex case. The new generators take the form

T tain.pan = OT onpap* T*-+ T, | (5.10)
T=a-a.
The sets T" = {""7‘0‘:’;,’), pzy)» k=n} form a sequence of solvable ideals (2.34), (2.35)
in hsc®(4). The ideal T is a radical of hsc™(4).

To calculate the structure coefficients in the new basis (5.10) it is sufficient to
calculate the commutator [@T, 'T]; ie, due to the property [4,B*C]=
[A,B]*C+Bx[A4,C] and to the commutativity of T with all the generators of
hsc*(4), the relation

[T, T =[OT, OT ]+ T*-..x«T (5.11)

n+m

takes place. The transformation to the new basis has the form
(s, ¢ F(s.0)
(n)Taizcl),B(Zj) = Z Cn,m(s) (M]Txi,zc]],ﬂ(zj)s (512)
m=0

where the expression for a matrix C, ,, is given in Appendix E.
The curvatures of hsc®(4) in the new basis take the form (5.6), where for the
structure coefficients we have

e ———————p—

~

ny sy ¢ 4 0 sy o I jy

n, S, ¢ L j =9(”3_’71—"2)ZCm,n;—nl—nz(sa) 0 s, o L jofs
- m .

ny sy ¢3 I3 s m sy ¢35 Iy J,

(5.13)
Hy—H —H, EmMEs +5,— 54, 0(n)=1(0) when 720 (n<0).
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Now one can easily obtain a factoralgebra hsc(4) = hsc®(4)/T". To obtain it, it
is sufficient to demand
WFED =0, n>0, (5.14)

which is equivalent to T'=0.
The gauge fields, which correspond to an algebra hsc(4), are of the form

o, =} @O, B(Zj)Ta(z?zCl)),B(zj)' (5.15)
s, ¢l j
The conformal multipiet for each spin s=1,2, .. appears in the decomposition
(5.15) only once—unlike the case of hsc™(4). :
The curvatures of hsc(4) have the form
RS, pon = Oru @i 2, s
+Y 8+ —c)d2m—1'"—=1"+1)86Q2r—1"—1+1') (2t = 1" — 1 +1")

x8(2p—j' —j"+J) 82q —j+ ' —j") 8Qk+j"— '~ j)
x 6(|S’+S”—S+ IIZ)(_I)(5'+J"—3—1)/2

s ¢ 1
” ” " " (s’.¢") (s”,¢")y(2m) A(2p)

x| 8" " 1T T 08 Gyam peesen Paaan r f2g) ’ (5.16)
s ¢ I g

st hoh
§2 € L 2 =Z
s3 ¢3 I Ja "
0 s ¢ I J1
x| 0 5, 2 L Jyl, (5.17)
2m sy ¢35 I3 s

(2m) (255+ 3)! (s5+m+ 1)!
(2s;+2m+3)! m!(s,+ 1)

0<m< (s, +5,—53)/2,

where we have substituted into the formula for the structure coefficients (5.13)
(n'=n"=n=0) an explicit expression for C,, o(s) (E.14). The algebra hsc(4)
contains SU(2, 2) as a maximal finite-dimensional subalgebra and the curvatures
(5.16) are the direct generalizations of the curvatures of conformal gravity.

The generators corresponding to the conformal multiplets of spin one (the
corresponding gauge fields have a spin two) form a subalgebra in hsc™(4) with
commutation relations

-

[(MF,, ™F,1=rS, n+mF, (518)

where A, B, C are the indices in the adjoint representation of SU(2, 2).
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Let us notice, that there exists a contraction of the algebra hsc*(4) to an algebra
hsc(4)(R[x]) with T, n>0 (4 is an index in hsc(4)). This contraction is
obtained by taking the limit A —» 0 in the commutation relations of hsc*(4) in the
basis

(m)F(s,0) _ 1—n mFise)
ATU(ZI),B(ZJ') =4 TG(ZI)J;(ZJ')' (519)

From the curvatures of algebra hsc*(4) one can construct the exact invariant

1=J' tr(R A R), (5.20)

I(hSCw(4)) = Z (_1)n+l+j+1 J (H)Rz’zcl)),ﬁ(Zj) A (MR —c)a(ZI)’ 8(2/) (521)
PI,I’SJ,_L'
(see (4.10)). However, the invariant (5.21) is the integral of the full derivative and
does not generate a nontrivial dynamic.

In conclusion let us mention, that as the algebra SU(2, 2) ~SO(4, 2) can be
considered as an algebra of isometries of a space adS; and the gauge fields of
algebras hsc{®)(4) in the corresponding basis can also be considered as the
generalization on the case of higher spins of the adSs gravity. The corresponding
field theory will be considered by us separately.

6. THE REPRESENTATIONS OF SU(2,2|1) wiTH HIGHER SPINS

In Section 4 we have constructed a conformal basis in linear space V. In this sec-
tion we shall generalize those results on the supersymmetric case of a representation
of SU(2,2|1) in SV (real form of the complex linear space aqpc(4!{1;c)). We
decompose SV into irrepses of SU(2, 2| 1) and introduce in each of them the super-
conformal basis, connected with a reduction of an algebra to subalgebras

SU(2’ 2’ 1) - SU(27 2) ('B u(l )chir - 51(29 @) @ 50(1, l)conf® u(l)chiri (61)

where u(1),,;, is generated by the operator I (3.11d) and so(1, 1), is generated
by D (3.11c).

All the conformal highest vectors of representations of SU(2,2|1) satisfy the
relations

S5.T°)=0, S§,(T%)=0, D(T*)=sT", (6.2)

where §a, §d are the raising operators (3.11f). The general solution of (6.2) is the

same as that of (4.4).
All the irrepses of SU(2, 2|1) are obtained from the highest vectors (4.4) by the

action of the lowering operators J,, J..
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In order to decompose the irrepses of SU(2, 2| 1) into the irrepses of SU(2, 2), let
us find all the conformal highest vectors of SU(2, 2) satisfying (4.3). One can easily
check, that together with (4.4), where T is given by (3.7), the relation (4.3) in SV
is satisfied by the vectors

ox("T wnpe) ~ O i/)zﬁltﬁz) =dys— 1)y @ (T), (6.3a)
M T3, p) ~ Tty = Baoy@p— 2TV, (6.3b)
a n 5 s,5— 1,0
[Q > Qﬁ](( )Ta:(s),ﬂ(s))N Ta(.s—l),ﬂ(s—l)
; 1 n
=azz(s—l)aﬂ(s—l)< 2( T 1) ) (T ) (6.3c)

or, giving a general formula,

(n) s, o,u
T,.- o+ 1) = Bao— ) B(o + )

1
2(s+1)

x(a+ﬂ”+%aﬂ”‘"(a+a+- &-a)s WJM(TV, (6.4)

T=a-a+oa%a.

Here s is a highest conformal weight in the irreps of SU(2, 2|1), s is a highest con-
formal weight of an irreps of SU(2, 2), which is equal to s=s, s—1, s—1, uis a
chiral weight, u= —1, 0, 1, and the numbers « and s are simultaneously integers or
half-integers.

Thus we have decomposed every irreps of SU(2,2|1) with the highest vector
T, s ps) 10t the irrepses of SU(2, 2),

a

Vs=(s,s,0)®(s—%,s—%,%)@(S—%,S—%, —%)@(S—I,S—I,O),
s=1,2,... (65)

Let us mention, that the signature (s — 1, s — 1, + 1) defines the complex-conjugated
representations.
The adjoint representation decomposes as follows:

(ls 1! 0)'_(M, P3 Ka D)a (%, %’ %)—(Sa’ Qﬁ)s
(%1 %9 _%)_(SB9 Q:x)’ (0, 0; 0)_(U)

The gauge fields w;, where 4 is an index in the representation space (6.5), are the
superconformal multiplet with a spin content s+ 1, s+ §, 5. As is known [4], for
such supermultiplets, the number of degrees of freedom off and on the mass shell
is equal to zero (the Fermi degrees of freedom are taken with the minus sign), i.c.,
fulfils the necessary condition of construction of a minimal Lagrangian with a
closed supersymmetry algebra.
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In order to construct a complete basis in the irreducible representation spaces of
SU(2, 2|1), it is necessary to

(1) act on (6.4) by the operators Faﬁ;
(2) decompose the thus-obtained expression into the irreducible multispinors.

The resulting superconformal basis has the form

(n)(s.a,c u) ~ =~ pls—u)y(s—c) o +u)d(s—c)
T oty bz~ Caarys TTOCpays

X PVS e P}’5 ((H)T:,(?l—‘-u),f(a-o-u))’ (6'6)

a—C

where C are the spinorial C-G coefficients of sl(2; C).
Let us first calculate the expressions

(n) p(s.9,6,u)
" Pa(21),B(2j) ~ 61(21),
x P+ Py (WP ) tsw) (6.7)

plo—u)i(o+u)

plo—u)y(o—c) 6/}(2‘) Ha+ukdlo—c)
J 3

5—(
(n) pSsonu - _
PG it = Ao Bga @)
X ()~ “(d,a* + aPay)". (6.8)

Unlike the basis (6.6), in the basis (6.7) each vector P belongs to the definite irreps
of an algebra SU(2, 2), but not of a superalgebra SU(2, 2|1).

With the help of the formulas from Appendix D it is easy to find, in analogy to
(4.6), the explicit expression for the basis (6.7),

1
n) p(s.9.c,u) sc—a—1 } 1 —n—(c+u)2
( )P“(ZI) f}(zl) 2 51 ( )az ¢ v

a1 taz=a9+n

X C(a+n——[+j+1)/2,(a+n+1~j+1)/2,4+1
(s3— 1+ 1+j+1)2, (01— + I+ j+ 1)/2,I+j+1

x (d + )54 3 +u(a)s— a_uT:(’;la)zp((;;) u)/2,(c+ u)/2] (69)

where Ttz ig defined in (4.7). Now we need to express the basis (6.6) in
terms of the basis (6.9). Noting, that because of the grassmanian nature of « and

at we have

(T)" = (a,a> + alay)" +na* o(@,a* + alay)" ", (6.10)

and, taking into account,

mplncs) (G,a*+aPag)=1/2a+n+4)(n+ 1) "HIPIGRD o (6.11)
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as it follows from (6.9), we obtain the relations:

(n)yp(s,s—1/2,¢,u) _ (n) pls,5—1/2,c,u)
Teanpan =""Pain stz » (6.12a)
W Ened) 25+n+3 () pls,5,5:0)

1(21)-ﬁ(2j) - 2S + 3 d(ll),ﬁ(2j)
n
n—1)pls+1,5.c0)
+ 25+ 3 Paan bz » (6.12b)
(m)pls,s—1,6,0) _ n+1 (n+ 1 pls—Ls—1,6,0)
Taenpian = 25+ 1 P, sy
[25+n+2
LYTHRT L (n)ypls,s—1,6,0)
+ 25+ 1 P, sy » (6.12c)
(5.9,¢,u) 3 als'0,6,1)
“Thden= L Clmsn,s) PG, (6.12d)

n+s'=n+s

The nonzero transformation coefficients in (6.12d) are

1 s=s5—1%
= .12
C,n,s,n,s) \/m ~ (6.12¢)
2:+3° 7=5
n n+1
Cyn,s,n—1,5+1)= CIEY Ci_(ns,n+1,5—1)= w T

2s+n+2
Cs—l(n’ s, n, S) = T”'—l_,

C,(nsn,s)=C,(n,s, n,s).

For calculation of the structure coefficients of shsc*(4|1) we shall need the inverse
transform

(s,9,¢,u) __ -1 ooy (n)r(se,cu)
(n)Paz(2l).ﬁ(2j)— Z C i (n,s,n',s')" Td(zl).ﬁ(zj)’ (6.13a)
s+n'=s+n

where the inverse matrix
CYn,s,n,s)=(=1Y""C/nsn,s) (6.13b)
The Hermitian conjugation in the superconformal basis (6.12) is realized by

(5,9,¢,1) + _ ) (s, 0,¢, —u)
((n)Ta(Zl),BQj)) =-" TB(Zj), @(2/)° (6-14)

(s,9,¢,u)

We have therefore constructed a superconformal basis ""Ta(z,),ﬂ(zj), where
s=1,2,.. determines the signature of the representations of SU(2, 2|1);
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n+1=1,2, .. numerates the equivalent representations; s =s,s— 1,5—1 and the
chiral weight =1 (s + u is always an integer) determine the signature (s, 5, —u) of
the representation of SU(2,2) (see (6.5)); ¢c= —g, —9+1,.,0 18 2 conformal
weight of a generator; (/, j), [, j=0, 1,1, .. is a Lorentzian signature such that

c—u ctu
i =
2 " .]/

—2—‘, I+j<a, I+

cC—Uu . c+tu

I> ,
2 It

\

are integers.
Let us mention, that the superconformal basis is defined modulo the transforma-
tions of a form '

F(s,9,6,u) . (s,0,0,u)
(")T:z(ZI), [ Z Cn,m(s’ g, ¢, ul, j) (m)Tu(zj), A2 (6.15)
m

7. THE SUPERALGEBRAS shsc®(4{1) AND shsc(4|1)

In this section we shall calculate the structure coefficients and obtain explicit
expressions for the curvatures of superalgebras isu®(2,2|1)=shsc*(4|1) and
isu(2, 2| 1) =shsc(4|1). These superalgebras are the supersymmetric extensions of
the algebras hsc™(4) and hsc(4).

The gauge fields of shsc®(4|1) have the form

ao [v.o]
= :—|24l2 (1), (5,0, c,w)a(20), B(2) (n) g (s:9,6.4)
w,= Z Z > i o, T .50 865y (7.1)
n=0 s=1 a,lc,‘u
2 J

The summation in (7.1) is performed over all possible values of parameters (see
above). The grassmanian parity of the fields coincides with the grassmanian parity
of corresponding generators and

&(T°) =¢(w;) =1(0) for half-integer(integer), (7.2)

w;, T =(-1)*"T"w;. (7.3)

The decomposition (7.1) with infinite degeneracy contains all the conformal super-

multiplets with the highest spin s+1=2, 3, ... and the spin content (s+1,s+1,9)
(unity is added because of the vector index p).

The conformal supergravity supermultiplet is (2, §, 1). Comparing (3.8d), (3.8¢),

and (6.12), (6.9) it is not difficult to find, that there exists a correspondence (sec
(5.3), (54))

i(1,1/2,1/2,1 ir(1,1/2,1/2, —1/2 1,1/2,-1/2,1/2 1,1/2,—1/2, —172 1,0,0,0
(lTo('z 12,1/ /2),1T§ 12,1/ /)’ To(z / / /)’ Té / / 2) Tl ))

=(ng, S, —0.,, Qs —% U) (7.4)
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and analogously for the fields,

2
1,1/2,1/2,1/2 1,1/2,1/2, —1/2 1y (1,172, —1/2,1/2) - (1,1/2,—1/2,—1/2 1,0,0,0
(wi,d/ / /), wL,a/ / /)’ _lw:"a/ /2.1/ ), m)L,o‘z/ / /)’ _ﬁw:‘ )
= (¢#,d’ ¢u,a’ l/lu,a’ .pp,a" Ap)’ (75)

where ¢, , and A are the connections of the special conformal supersymmetries,
gravitino, and u(1) gauge vector in usual conformal supergravity.

Now we can give explicit expressions for the curvatures of shsc®(4|1). According
to the general definition of the curvatures (5.5) and the formulas (6.9), (6.12) and
Appendix C, we obtain

(n) p(s,0,c,u) — A, (s9,0u)
R aan.pon = 00 @150, 4

+Z5(c’+c”—c)5(u’+u”—u)5(2m—1’—1”+l)5(2r—1”+l’-—l)

X811 +1"=1)82p = ' 5" + 1) 6Qq~ "~ j+ ') 62k + " = j— ')
(B4 5" b 1]5) 0o

nl sl 4 ¢ u 1, j,
x| n" s & ¢ w1 j ”»

n A g ¢ u l J

% (n’)w (s',a% ¢

L, u') (n"),\(s",a", c", u")p(2m) #(2p)
u,2(21)y(2m), B(2k) p(2p) Dy a(2r) > B(2q)> ’ (7.6)

where the matrix of the structure coefficients has the form

ne sy o9y ¢ uy I g
n, §; 93 € Uy L ji|= Z Z (—1)s—=

. si+nl=s;i+n o +asl=a.+n
Ry S3 a3 €3 uy Iy jp | THTETR ATermatw

3
- (oi+ni+ ji—bi+ 12, (a4 nj — i+ b+ 1)/2,0;+ 1
x [T {C. (s miy i, m)) C it it ot — a4 VBt i o4 i YRt i 1

i=1
S R AT S S
xA-‘i—dl,Sé—dL-"ﬁ—d} Ci—U Cy—Uy; C3— Uy ¢+ u, Cy+ Uy Cy+ Uy (77)
- 12.43 2 2 2 2 2 2 ’ )
l I Iy J1 Ja Ja
siyni=0,1,.,4,9/=0,4,1, .., i=1,2,3.
The A-coefficients are defined by the relation
(a+)l|+u|al|—u| * (a+)12+u2a12~u2= Z Aﬁ].,li.zl,gul(a+)13+u3al3ﬁu3. (7.8)

h,u3
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By a simple calculation, we obtain

0,00 _ 41,10 _ 40.1,1 _ 41/2,1/20 _ 4121721 _ 4L12172 _ 40,1/2,1/2 _
Agoo= Ao,o.o =Ago0= A 172, —1/2,0 = A 172, -1/2,0 = Ay, 212 = Ag = 1, (7.9a)
ik __ ¢ 1\ h+bh—h 4hh. D
Auz,ul,ua_( 1) AHI-“LMJ (7'9b)
Iy, b5 _(_1\Mbh+h+h—B gl,h0
A—ul,—uz,—us—( 1) Aul,uz,us’ (7‘90)

and all the A-coefficients besides (7.9a) and those obtainable from them, with ‘the
help of the symmetry properties (7.9b), (7.9¢) are equal to zero.

From the symmetry properties of the A-coefficients (7.9b) and of the structure
coefficients shsc(1]3) (C.6) a symmetry property of the coefficients (7.7) follows,

Dl D2
Dz =(_1)2?=1(S[+ni+l|‘+ji)+44142+2d3 D1 , (7.10)
D3 D3

where D, are the rows of table (7.7).
To construct a simple superalgebra,

shsc(4]1)=shsc™(4|1)/R(shsc*(4]1)), (7.11)
let us introduce in shsc®(4|1) a basis, analogous to (5.10),

(n)z(s,a,c,u] _ (0)yg(s.0,0,u) .
T onpan=""Taapan*T* -+ T,
5 (7.12)

T=a-a+ato

The matrix of the transformation from the new basis (7.12) to the old one (6.9),
(6.12),

n
)y (s.ocu) ] ( )z(s,a,c,u)
" Ta(21),B(2j)_ Z Cn,m(s) " Ta(zl),ﬁ(zj) (713)
m=0

is calculated in Appendix E. The structure coefficients of shsc®(4|1) in the new
basis can be written in the form

ny 8§ 491 € U L
Ny 8§ 9 €2 Uy L )2

hy S§3 d3 C3 U ls J3

0 s, a9, ¢ u L Jy
=9(”3—n1—”2)2Cm,n,-n,—nz(s) 0 s 093 ¢ u L j2l, (7.14)
” m sy a3 ¢y us I3 s

Ry—R — Ny SMSS;+85— 53,

where matrix C is given in (E.15), (E.10).
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In order to pass to the factoralgebra (7.11), let us demand

WFEacn =0,  n>0, (7.15)

which is equivalent to R(shsc®(4|1))=0.
The gauge field on shsc(4|1) has the form

=¥ 12002 g (5,0, 0)a(20), () (5,006 w)
w, =i @, T pon (7.16)

The conformal supermultiplets of each spin occur in the decomposition (7.16) only
once.
The curvatures of shsc(4|1) have the form

(s,9,c,u) (8,0,0,1)
R,w a(20), f(2) = a[# v1,x(20), A(2/)

+Y0(c +c"—c) S +u' —u)5@m—1'—1" +1)$Q2r —1" +1'—1)
X2 —I'+1"=1)8(2p— ' = " +]) 6Qq— "~ j+ J') 2k + j* — j= ')
X 8(Js+ 5 +8" +1],) i+ o1
SI dI cl ul ll jl
d cll u” ll! jll

s 9 ¢ u I j

X sll

(s, 9" ¢ 10') Y, c” u" ) p{(2m) p(2p)
X0y a2ey92m), ﬂ(Zk)ﬁ(Zp)wv a(2r) B(2a), ’ (7.17)

! .
§y 9y €1 Uy 1 ‘].1 (2m)'(233+2)' (s3+%)m .
$2 92 € uy b jp =Z (25, +2m+2) m!

§3 93 €3 u3 Iy j;

where

0 sy 9y ¢ u I Ji
X 0 52 da C2 u2 12 jz N OSmS(S1+S2—SJ)/2. (7.18)

2m §3 d3 C3 Uy 13 J3

The expressions (7.18) are obtained from the formula (7.14), in which one
substitutes (E.17) at n; =n,=n,=0.

The superalgebra shsc(4|1) contains SU(2, 2|1) as a maximal finite-dimensional
subalgebra, and the curvatures of shsc(4|1) (7.17) are the generalizations of the
curvatures of conformal supergravity.

Let us consider the Bose-subalgebra of the superalgebra shsc®(4|1) and show,
that an isomorphism take place,

(shsc™(4]1))y ~ hsc°°(4)®hsc"(4)®( é u(l),,). (7.19)

n=0
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We can choose the conformal basis in the (shsc®(4|1)); in the form

(n) (s, c) _ (n) pls,s,¢,0)
PTaon.pn =T "Puaipepn  5>0,

(7.20)
T = (mT(1.0.0.0) (generators of u(1),),
where the symbols of the projection operators take the form
I, =31ta"%a), (7.21)
o «n,=1,, (1.22)
I, «I_=0, (7.23)
and P is the basis (6.9).
In the basis (7.20) the isomorphism (7.19) becomes evident, because
WPvien="Tan e >0 (7.24)

where T is the Bose generators (4.6) of hsc™(4).

The maximal finite-dimensional subalgebra in (shsc(4|1))s/ @ *_, u(1), coincides
with the SU(2, 2) @ SU(2, 2) and describes two “gravities.” Analogous reducibility
of the boson sector takes place in the case of adS, superalgebras of higher spins and
auxiliary fields shsa(1) in [17].

However, in the supercase each conformal multiplet with spin 5 enters as a
highest multiplet into the supermultiplet (s, s—3, s—1) and as a lowest multiplet
into the supermultiplet (s + 1, s+ %, s). In particular, gauge fields with spin two
enter the supermultiplets (2, 2, 1)and (3, 3, 2) and the supersymmetry transformations
transform the second spin two into the spins 5/2 and 3. Thus, the superalgebra
shsc®(4|1) contains only one conformal superalgebra SU(2, 2[1).

It is extremely interesting to construct a theory with spontaneous symmetry
breaking such that all the higher supermultiplets become massive and only the
usual supergravity multiplet remains massless. This theory can possibly be based on
the superalgebra shsc®(4|1), in which each spin enters an infinite number of times
and variants with a redistribution of degrees of freedom are possible.

In conclusion let us mention, that from the curvatures of shsc*(4|1) one can
build the topological invariant of type (5.20). It has the form

I(ShSCw(4| 1)):2/14(;1’ n” S, s’)(_l)s+n—1—j

xi‘z(””f ‘")RL’(’Z",’;’E&,, A IR a—e—waD BE)  (725)

where the coefficients of a bilinear form are given by

Ann', s s)=0n+s—n"—s) > C,nsn",s")C,(n, s, 0", s") (7.26)

s"+n"=s+n
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8. THE EXTENDED CONFORMAL SUPERALGEBRAS shsc®(4|N) AND shsc(4|N)

Here we shall briefly discuss the extended conformal superalgebras. Their
complexifications isl®(4|N; C) and isl(4| N; C) were discussed in the Section 2. To
construct the corresponding gauge theories it is necessary to find a superconformal
basis connected with the reduction of an algebra to subalgebras,

SU(2,2|N)—SU(2, 2) ® SU(N) @ u(1)cpir
"’51(2,C)®So(1’ l)conf@SU(N)®u(1)chlr (81)

To construct this basis one must take the generating elements (3.1), (3.2), and
instead of the pair a, a™ to introduce 2N generating elements -

{0, 07} =26, §j=1,.,N (8.2)

The symbols of operators which are quadratic with respect to all generating
elements and commuting with the “particle number” operator form the super-
algebra U(2, 2| N).

The gauge fields of a superalgebra shsc®(4|N) contain with an infinite
degeneracy all SU(2,2|N) supermultiplets with highest spins s = 2, 3,... A
superalgebra shsc(4|N), being a factoralgebra of shsc®(4|N), generates all such
supermultiplets only once. The corresponding curvatures generalize the curvatures
of usual conformal supergravity with N<4 and what is especially interesting,
provide a possibility of construction of conformal supergravity with higher spins for
N>4.

The most interesting case is the case of N=35 superalgebra. The corresponding
theory includes the grand unification group SU(5). It is known, that one cannot
construct a usual N =35 conformal supergravity off the mass shell because of the
necessity of introducing higher spins (spin 3).

In our case we do not restrict ourselves to the case of spin two and, generally
speaking, the restriction on N does not appear. The construction of a conformally-
invariant theory of higher spins with N>5 is a very appealing problem, and
especially a variant of such a theory with spontaneously broken conformal
symmetry. In this case one can hope to obtain a unified theory, which includes
Einstein supergravity, the fields of grand unification, and the massive higher spins.

However, the knowledge of superalgebra is not sufficient for the construction of
such a theory. It is also necessary to construct the corresponding multiplets of
lower spins and to find a complete set of auxiliary fields (the same holds for all
theories with N > 1).

9. THE shsc!”(4| N) SUPERALGEBRAS

We have been considering complex superalgebras isi®(M|N;C) and
isl(M|N; C) and their real forms (for M =4) shsc*(4|N) and shsc(4|N).
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The isl®(M|N; C) and shsc*(4|N) superalgebras, as mentioned above, contain
an infinite family of the ideals 7", which are embedded in each other. Under
the factorization with respect to the maximal ideal, we have obtained simple
superalgebras isl(M|N;C) and shsc(4|N). However, can all factoralgebras be
considered with respect to all the ideals T™ as

sl M| N;C)=isI®(M|N; C)/T", 9.1)
shsc™(4|N) = shsc™(4| N )/T™. (92)
These factoralgebras are evidently obtained, under the identification

(k)fv a(m) =0, k>n, (9.3)
0 T;;zj;;(;j) =0, k=zn(N=1) (9.4)

Therefore, we have a family of superalgebras which generalize the finite dimen-
sional sl and SU superalgebras. The isl”(M|N;C) superalgebras contain the
sl(M| N; C) representations with multiplicity # and the shsc(4| N') superalgebras
contain conformal supermultiplets of all spins with multiplicities also equal to n.
When n=1 we have, by definition, isl(M|N;C)=is{M|N;C) and
shscV(4| N)=shsc(4| N).

In Section 2 we have mentioned that there exists a whole family of factoralgebras
isl,(M|N; C) because T ! is not a unique radical in isI®(M|N; C). Analogously
to that there exists a family of factoralgebras 1sl‘"’(M IN;C) for each fixed n.
Correspondlng ideals T are defined as in (2.43) where instead of T=a-a in (2.40)
there is T,=a-a— p1] peC. Respectively, there exist real superalgebras
shsc{V(4] N).

Consider maximal finite-dimensional subalgebras of isl”(M|N;C) and
shsc™(4|N). There are furnished by the generators ™T,, m=0,1,..,n—1, 4
being an index of the adjoint representation of sl(M|N; C) or SU(2, 2| N).

The commutation relations in these superalgebras are read

[9F,, ™F) =15, * T On—k—m), 9.5)

where [ S5 are the sl(M|N; C) or SU(2,2|N) structure constants. It is easy to
verify (9.5) when one recalls the commutation relations of isl or shsc and one takes
into account Egs. (9.3), (9.4). A straightforward calculation shows that the relations
(9.5) obey the Jacobi identities

B(n—k —1—m)(O(n—k—1)f5 S s(—1)
+0(n—k—m)f5cf5 (=14 + On—m—1)f5 fso(—1)**)=0 (9.6)
Note that the relations (9.5) define a family of superalgebras for some arbitrary
initial superalgebra.

Gauge fields for the shsc™ (4| N) superalgebra contain a spin two super-
multiplets.
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In conclusion, note that extensions similar to. (9.5) exist also for other super-
gravity and higher spin superalgebras. The corresponding extension of supergravity
describes a collection of massless spin 2 and 2 fields analogously to the construction
of Ref. [18].

APPENDIX

A. Notations and Conventions

We follow the conventions of Refs. [1-3, 11-14]. The two-component spinorial
indices are raised and lowered by means of .= —ég,, &%, g,=22=1, as
A*=¢"4,, Ag=¢,54° and analogously for dotted indices.

A symmetrization is implied for any set of upper or lower dotted or undotted
spinorial indices denoted by like letters. The usual summation convention is under-
stood for each pair of a lower and an upper index denoted by the same letter. We
use the notations such as A;,,,=4,,—4,,,

Aa...a= Ay, Eup ' Bap = Eain), B(n)>
e . (A.1)
53{...5;:52((’;)), Ay Ay = Ay, 9o 9a=qun)> etc.
S R S —
n n "

The four-dimensional world indices are v, u=0, 1,2, 3. The metric has the
signature (+, —, —, —).

For a change of notations from the Lorentz indices (a, b, ...) to the spinorial ones,
the matrices a§ﬁ= (1,04, 0,,0,) are to be employed (o,, d,, and o, are the Pauli
matrices). We often use the notations

é(n) = 1(0), n=0(n#0),
8(n)=1(0), nz0(n<0),

|n|, = 1(0), n=2k+1(2k), n, ke Z,
1 (A2)
A“"'“=n_ (4,,...5,+ (n! — 1) permutations of a; - - - at,,),

2=
n

Aa(n)’a(m) = A(ﬂl N (B1--- Bm) at nz=m,

- Bm%m 1 an),
where brackets denote full symmetrization.

B. The Spinorial Clebsch—Gordan (C-G) Coefficients

A spinor Ty, g2 can be decomposed into irreducible symmetric multispinors
according to [15],

- 21" L
Taian,pary =2, Caaypar,”* T, (B.1)
=

Ly _ 7~ 20, B2l
Tyt = Coun, T o, parrys (B.2)
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where the spinorial C-G coefficients are

Coian pain” 7 = CUL 1, 1" 020, paun Odzeybian (B.3a)
C—'V(ZI”),M(ZI),EQII) = C(I, l’, ll/) 80((214),5(214)6:{%.;,)'?(2!)’ (B.3b)
et + 1)
ciLr,1M= , B4
( =J@ant@sirr+ I+ 1) (B4a)
Qu=I1+1"-1", 2s=1-1"+1", =0 -—-1+1". (B.4b)

The symmetry properties are expressed as

Ca(ZI),ﬂ(ZI'),V(ZIH) = ( -1 )l+ r=r Cﬁ(Zl'),rx(Zl),y(zlu)’ (BS)

and the orthogonality properties as
Y. Caenpary,” Corr ) SRBEE = 353105 (B-6)
" a2 o, P = B2, (B7)

These formulae are analogous to the corresponding usual relations for C e
[16]. The spinorial analog of the intertwining formula for five cLhl . coefficients
[16] is written

AP G 82k1)e2ka) @i
Cozp,”™ Cpn), Cigjosarn,”

% C o ek 22 Crainein.”™”
Ji J2 J
= S+ D@+ D@+ DR+ DSk, kb Cagppson”® (BY)
v Jz

where {-..} are the 9j-coefficients [16]. The triangle coefficient 4(/, I, 1") is
I+ =1"NA=U+I"N+1"=1)!
(+0U'+1"+1)! '

AL, 1M = (B.9)

Note that the shs(1|2) commutation relations [6] can be rewritten as

il+1 —1"—=1

T T} =
[ (27) B2t )} ;\/(21" + I)A(I, l’, l”)
X 6(|4ll, + l+ l’ - 1” + llz) Cm(y)’ﬂ(y'),ﬂz[") TT(ZI")' (B.IO)

All formulae of this appendix are true for dotted multispinors.

C. Some Results of Refs. [1,2]

In this appendix for the reader’s convenience we list some results, referring to the
algebra shsc(1 | 3).
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The generating elements in the operator realization of shsc(1]3) have the form

[aw bﬁ] =2i£aﬁs [aa’

aﬂ] = [ba, bﬂ] = 0,

The conformal basis in shsc(1|3) is

(s.¢)

1

i S5+ )5 —c)!

C:z(Zl), A+ eyte— C)bﬂ(s +c) a-y(s— c}s

(C1)

(C.2)

where C are the C-G coefficients (B.3), (B.4). The number s =0, 1,1, .. numerates
the representations of so(3, 2) with a signature (s, s), where ¢ = —s, —s+ 1,.,s5is
the conformal weight of a generator and /=|c|, |c| +1, ..., s is the signature of a
representation of so(2, 1). The associative product of Weyl symbols (C.2) has, as it
was shown in [1, 2], the form

(TS5h* TG =40~ o(c+ ¢ = ")

X0Qu—I-U'+1")62u—1+1'=1") 62t =1"+1-1")

with the number coefficient

ll III

¢ € | Eatauy pany T 525 e

21+ 1120+ 1)1 (21" + 1)!

S"
c” = /

I+
l” (

=UNWA+" =W+ =D+ U+ + 1)

Z (_1)(s+:'—.r"—k—k’+k”)/2

4 , 4 "
di,k (E) di’,k’ (5) dllc”,c” (‘

k k', k"

d
2

s+k s+k s"+k”>A s—k -k
b 2 2 b}

i

x< s+ k' s'—k’, I >

2 2

sll + kll S” - kll

, l/l
/

(C3)

(C.4)

Here A(J,I',1") are given by formula (B9)and k= —, —/+1, .../, and similarly

for k', k”.
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We have expressed the structure constants of the associative algebra ag(0]4;C)
through the nine j-coefficients and some particular values of the Wigner
d-functions. The summation in (C.3) formally is

"

noqr o __ 1 . — 1 1
u,v,t,5",1"=0,3,1,..; ¢"=.,-3031..

However, due to the extension of the definition of the coefficients (C.4) and
S-functions, the region of the summation becomes restricted non-trivially.

We extend the definition of the coefficients (C.4) by putting them to zero if at
least one of the following conditions is not satisfied:

s"e{ls—5, . s+5'}; I"e{|l-U, ., I+1I'}; c+c'—c"=0;
le {lel, ... s}; Ve {|c], . s'}; 1"e{lc"], .. 8" }; (C.5)
lel<s; el <8’ | <s"

Note that due to the symmetry of the nine j-coefficients, the coefficients (C.4)
satisfy the symmetry condition

(D, D', D")=(—1)+s+++'+"(D' D, D"), (C.6)

where D are the columns in the table (C.4)
s

D=|c¢c

1

The gauge fields of shsc(1|3) are of the form

= i — 1281 Lc)a(2l) (s, c) —
wl—l_zl Szst’ccz )TaiZCI)’ ,u_o’ 1’ 2:

+
u

(C.7)
W= -0,
where the fields and the generators have the same statistics, and which are
compatible with a spin.
The curvatures shsc(1|3) are obtained with the help of (C.3), (C.6), taking into
account the statistics of fields and generators,

RG oy = 0,055 + X177 TN+ ¢ =)
X (2p—1' — 1" +1)8Q2q—1'+1"—1) 82— 1" +1'—1)
x 6(|4s's" +5 + 5" —s+1{,)

’ ”

N ) S

" (s',c") (s",c") 7(2p)
x{ ¢ ¢ O 0penPraan (C8)
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D. The Superconformal Basis

In this appendix we shall perform the calculations, leading from (4.5) and (6.7)
to the formulas (4.6) and (6.9) for the conformal bases in hsc™(4) and shsc®(4|1).

Using the definition of the differential operator Pal, (3.11a), it is not difficult to
obtain that

j(e—c) 3 =
l ¢ Fyd * "P}JJ (ap(a—u)af(o+u))
N —————

da—C

_— (=1)2= 2> —u)l (s + u)! (s — c)!
—d|+42=a cC—u ' c—u ' c+u | c+u |
(01+ 2 ).(dl——z—).(dz-l- 3 ).(42‘— > )

X Ey(a2— (c+u)2), ploz— (c+u)/2) €d(a1 — (¢~ u)/2), &(o1 — (¢ — u)/2) 5;:(41 +(c—u)/2)

= —0 1
X Qo) (c—uy2) Fd(or— (c+uy2) V(o + (¢ +w)/2) d1,9,=0,3,1,... (D.1)

Using the relation

y(21').p(21%)
C.,(z,), Ey(k), p(k)

U =R Q=N+ -+ T+ 7+ 1)
N QINQUWE I —I—ENI T + 17—k + 1)

20— k), p(2" — k
X Cz(zn,?( ).e{ ), (D.2)

which follows from
C 7(21'),11(21”)8 =\/(l’+l”—l)(l+ll+ln+1)
«(27), Yo (21;)(21”)

2 —1),p20"—1 :
% Caw),v( ), p( ), (D.3)

the expression (4.5) can be rewritten modulo a constant factor as

(n)r(s.c) ~jc—s—1 _13y52—¢/2
Teonpan~i"""" X (=17
s1+s2=5

(s+HI+j+20(s—T-N(+HI—j+DIs+j—1+1)! T oae)
s+ 2)1(sy +j+ D5y = j) (s + 14+ D) (s, =)~ 2CGE@D

x (3,a" + afay)". (D.4)

Performing the calculations in (D.4) and noticing, that, as it follows from the
definition (4.7) and from the expressions for spinorial C-G coefficients (B.3),
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(8,a°) (@ag)" T35
\/(s1+k—l)'(s1+l+k+1)‘(sz+n—k N(s,+j+n—k+1)

—IN(s I+ D (s =N (s + 7+ 1)

(s1+k,s2+n—k,c/2,¢/2) .
T o, pany > (D.5)

we obtain

(n)
Ta(21) san”™

je—s—1 —n-c (s+I1—j+DIs+j—1+1)
(=D 8 ["!\/ (251 2)!

Z(—l)k\/(sl—l)!(s1+l+1)!(s2—j)!(sz+j+1)!(s—l—j)!(s+l+j+2)!]
R (=) (s —k— D) (s, —k+ 1+ DI(s;—n+k—j)(s;—n+k+j+1)!

(51,52,¢/2,¢/2)
X Ty pay - (D.6)

s1+s2=s5+n

It is not difficult to notice, that the expression in the square brackets in (D.6) is

equal to
(2s+n+3)!n!c(s+n I+j+1y2,(s+n+{—j+1)/2,5s+1 (D7)
(2S+3)' (sa—s1+1+j+1)/2,(s,—s;+ 1+ j+1)/2,1+j+1? 4

where C are the usual C-G coefficients. The relations (D.6), (D.7) prove the
formula (4.6) for a conformal basis. The normalization of basis vectors is chosen in
such a way that the relation (4.10) holds. Formula (6.9) is proved analogously.

E. Matrices of Transformations (5.12), (7.13)
In this appendix we calculate the matrix C,, , of a transformation from the basis

o~

(M)TAl ---A,,,Bl By _ TA] -~~A,,,Bl ~--B,,(T)m (El)

to the basis

) F Bi---Bn_ By---By
( )TA1~~A;|, ! =14, ...4,, ! *T %...x T, (E2)
k
This transformation has the form
m T~
By By _ 2n+ M~ N (k)T .. B,
(’")TAI"'AIH ! - Z Cm’flj ( ):1-':41“-1‘1,.,13l A (E3)

k=0

Multiplying both sides of (E.3) on T (x-product) and noticing that
Y (M)TA1~--A,.,BIWB"

=(m+l)TA Bl-nB,‘_i.al(m)

1o An, a& %
SO, BB mm+ M—N+20—1)" T, PP (E4)

Ay,

B+ B
TAl---A,,, "
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we obtain the recurrent relation for C,, ,,

CUFM-N=CUrM—N_p(m 4+ M—N+2n—1)CT+M-~, (E.5)

m+ 1,k

The number M-N in (E.4, 5) appears due to the equality
str(63)=>(—1)64=M—N, A,B=1,.,M+N.
A

The initial conditions in Eq. (E.5) are

- By o 5 By---By 3
Cg,"k*M N=50,k, ((O)TA1~--A,,,BI B _(O)TAl---A,,, \ ) (E6)

The recurrent relation is easily solved by using a generating function

[+ o] Zm n
GZX)= Y — ¥ Ci.X, a=M-N+2n (E.7)
m=0 k=0

Then Eq. (E.5) and initial conditions (E.6) are expressed in a differential equation

J . X+aZ
2z E=1"2

G*(Z,X), G*(0,X)=1, (E.8)

which can be immediately integrated

¢z X’=(t—§)xn (1- 22~ (E9)

in a range |Z| <1, Ze C. Thus the matrix elements of the transformations (E.3) are

given by
1+2
k
_ml [ dZ In (1-2)

C2n+M—N_ il
m, 2kk, ozni(l_zz)n+(M—N)/2zm+l’

(E.10)

We shall need a particular value of C,, , at k=0,

— ZNNIN-—M)2—n { -
CZEM=N = (2m)! dz(1-7) _@m) (n+M2 N) , (E.11a)

027'Ci sz+l m!

2n+M—N __
C2m+1,0 _0’

m—1
(a+k), m'>0 and (a)o=1. (E.11b)

(@)= ]
k=0



CONFORMAL SUPERALGEBRAS 291
The matrix of transformation in (5.12) has the form

!
(Zs+3)!  ases (E.12)

Crnl) =\ G+ m+3ym om

as it follows from (see (4.6), (E.1), (D.6), (D.7))

n)(s,c) / (25 + 3)! (s,¢) n
( )Tcz(ZI),ﬁ(Zj) = nl(2s+n+ 3)! (O)Trx(Zl),B(Zj) (. (E-13)

When obtaining the structure coefficients of an algebra hsc(4) (5.17), the particular
value (E.12) is used:

Cs+3)12m) (s+m+ 1)
(2s+2m+3)! mi(s+ 1)

Comols)= (E.14)

In the case of a superalgebra shsc(4|1), the matrix of transformétion (7.13) has the

form
~ 2s+2) 2543
= [————C} E.15
Conl) =G5 ¥ nr2ym S (E13)
as it follows from
n (s,9,¢,u) (2S+2)' (s, a,c,u) - n
( )Ta(21),ﬁ(2j)= N (2Zs+n+2)n! (O)Tz(zl),ﬁ(zj) (@-a+ata)" (E.16)

The equality (E.16) is easily proven with the help of (6.11), (6.12). The particular
values of the coefficients (E.15), mecessary for the calculation of the structure
coefficients of shsc(4|1) have the form

_  (rolem) (s+32),
Cono)= [ Gyram+2)  ml (E.17)
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