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Baséd on the infinite-dimensional algebra hsc™(4) constructed by us, the cubic interaction in the conformal theory of higher-
spin fields in four-dimensional space~time is obtained. The theory contains an infinite number of fields of ali integer spins s» 2
and extends the conformal gravity,

s

1. Introduction

In this paper we continue the investigation of conformally invariant theories of massiess higher spin ficlds,
which was initiated in refs. [1~5]. In refs. [1,2] we have constructed N-extended conformally invariant higher
spin modcls in dimension D=2+ 1. These theories are described by the Chern-Simons action associated to the
supcralgebra shsc(NV|13) ~shs®(N{4) (shsc stands for supcr higher spin conformal). In refs. [3-5] a scrics of
new infinite-dimensional Lie superalgebras shsc™ (4] M), shsc'®’ (4| N) are constructed. These are an extension
of the superconformal algebra in a four-dimensional space, SU(2, 2| N). In the above papers explicit expressions
were obtained for the curvatures of all higher spins, which generalize the expressions known for the usual con-
formal supecrgravity (sceref. [6]).

The problem we are to solve next lics in constructing an action and constraints for the conformal theory of
higher spinsin D=3+1.

There are several reasons which make the construction of such a theory desirable. The theory of massless
higher spin fields could play an esscnual role in revealing the underlying gauge symmetry of strings at very high
encrgics. '

Itis known [7-10]}, however, that no gauge-invariant interaction of massless higher spin fields with Einstein
gravity exists in D=4,

It was shown in refs. [ 11-20] that the difficulties encountered in refs. [ 7-10] could be avoided in the models
with a non-zero cosmological constant. The interaction turns out to be non-analytic in A and forbids the flat

limit A-0.
" Another approach to the problem consists in constructing the interaction of higher spin fields with Weyl
gravity. Similarly to what was the case in supergravity, the conformal higher spin theory (CHST) may play an
important role in solving fundamcntal problems of the theory of higher spins in ADS,.

' Permanent address: P.N. Lebedev Physical Institute, USSR Academy of Sciences, Leninsky prospect 53, Moscow 117 924, USSR.
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In this paper we solve the problem of localization of the infinite-dimensional algebra hsc>(4) in the cubic
approximation.

The main facts pertaining to this algebra and the corresponding gauge fields and curvatures are presented in
section 2 (for the details, see refs. [3,4]).

In section 3 the linearized hsc®(4) curvatures are used to construct a linearized CHST in tesms of two-com-
ponent multispinors.

In section 4 we construct the action of the CHST and prove its gauge-invariance in the cubic order. The action
consistently describes the cubic interaction of conformal fields of arbitrary integer spins 52> 2.

In the Appendix the free conformal theory of spin s is described in terms of symmetric tensors.

2. Gauge fields and curvatures of the conformal higher s_pin algebra hsc™(4)

*

The algebra hsc=(4) gives rise to gauge fields in four-dimensional space~time, devoted as @ Sz 4R 4z OF
simply as "w(s, ¢, [, j). In these notations * the subscript s determines a [d(s)=s%(s+1)?(2s+1)/12]-dimen-
sional irreducible representation (irrep) of so(4, 2); c is the conformal weight of the generator T¢ that corre-
sponds to the field w¢ ({2, T} =cT*); (1, j) is the Lorentz signature; n+1 labels isomorphic representations
of SO(4, 2),and o

$22.3, n=0,1,; c=—=5+l,=542,.05=1, Lj=dlcl dlcl+l, . IHj€s—1. (2.1a,b)

The SO(4, 2) irrep spaces of dimensions d(s), s= 2, 3, ..., are contained in hsc=(4) with infinite multiplici-
ties. The validity of (2.1b) can be easily checked using the decomposition so(4, 2)—%0(3, 1)®so(1, 1).
The fields of the conformal gravity (CG) are, in our notations,

(Comis Wat2rs Wigizys O i) ~ (P03i55", O Ly, Qo fihy, Tl Qwily) . ‘ (2.2)

The corresponding generators furnish the d(2) =1 5-dimensional adjoint representation of SO(4, 2). The hsc>*(4)
curvatures have the form (details of the derivation can be found inref. {3]): '

RGNS s = O MO doay + T S(m=1' =1 +D)S(r—1 +1 =1)o(t=1' +1I" =1)d(p—j' - j""+ )
X 8(q+j —j" =i)8(k—j +Jj* =j)8(|s+5 +5"+n+n' +n"|2)

‘ no 5"—“ cl " }r ) . -
v == gt st =1 e P | el dwie ® O o 00 (23)
n s-1 ¢ [l j : . 4

The summation in (2.3) goes over all allowed values of the parameters (2.la); (2.1b) and 3( inj2)=1(0) at
n=2k(2k+1), 8(n)=1(0) at n=0 (n%0). S '
. The structure coefficients take the form,

\

" Notations and conventions, We use the conventions introduced in refs. [ 12-14]. The Greek indices g, v, p, 0=0, 1, 2, 3 are contracted
by the Nat metric 7., (sign p=(+, «\, =, =) ). The spinorial Greek indices a, B, 7, . & ﬁ'. $, ... take the values 1, 2. The transitions
. from upper spinorial indices to lower ones and vice versa are carried oul with the aid of the sympicctic forms ¢ap tag (812>
e mygmeitm 1), G = = Epus g = Epay AT 2™ Ap, Ay tapA®. The number of indices is indicated in parentheses (except for the
case of a singl¢ index). Upper (lower) indices denoted by the same letter are assumed to be fully symmetrized. When this symmetri-

. zation is carried out, the maximal possible namber of upper and lower indices denoted by }M same letter should be contracted.

!
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ny s3 ¢y Lo j

| : st sy sy \fs{ 57 % :
= 3 foy e o o la o ﬂcf SN I i )zi.fmn (2.4)

'“”“fm L 4 fie J2 s
(si, 57 =0, i, 1;---;?5?’:;37311 (i=1,2,3))

where the ¢ are Clebsch~Gordan coefficients, and

v 2L+ 1)L +1)1(25+1)!
(h+hL+hL+ )4, b, 1)

51 S22 5
€ € €3 |=0(c; +ea~c3)e(sy, 51, 53)e(l, I, 1)

L L I
x ( - l )(_" =3+ ky~-ki+k2)/2
k3 .k2,ky
R e P il
XAOG AR, 163 +ha), 13 +k3)) A (51— k), 1s =), (s =Ry | 2 Hha)o 4 (o =),

Y(s3+k3), §(ss —k,), Iy

Sy (a+b-—c)‘(a b+o)(~ a+b+c)'
A(a'b’c)"\/ (a+b+c+1)!

e(a,b,c)=1(0) atce{la—bl, .., a+b} (c¢{la—bl, .., a+b}), (2.5)

ki=—l, o, land = al, el +1, . L€, ¢ =5, =5+ 1, ..., 5 (i=1, 2, 3) are the coefficients involved in the
definition of curvatures of the conformal superalgebra in D=2+1, shsc(1]3).

The structure coefTicients of the conformal algebra hsc*(4) can be expressed through the quantities known
from the theory of angular momentum i.c., the 9/-symbols, Clebsch-Gordan coefficients together with particular
valucs of the Wigner d-functions (our conventions and definitions coincide with those of ref. [21]). The result-
ing cxplicit form of the structure cocfficients is rather complicated. However, they satisfy certain simple sym-
metry properties. It is not hard to show that under the interchange of any two rows, the symmetnzed table
coefTicients s : .

oS Il Jr _ N a L i ;
Syml ny s2. €2 b i | =(d)utmthinl gy 5 & L & . (2.6)
ny S35 ¢ ly jy ny 8y =cs b s '

N
\~

get multiplied Qith the factor _
(=1 )Zf.umﬂwhﬂ:) . : 1 (2.7)

The algebra hsc* (4} admits the invariant bilinear form
’ (A,B): z (~1)ntivsmy s 55h. . (n) (. ~c)a(2) F(2) | ‘ . (2.8)~-

The invariance of this bilincar form can be checked using the symmetry propertics (2.6), (2.7).
The corresponding MacDowell-Mansouri functions [22], fus R4 A Rpg?”, is a topological invariant of the
manifold M*. It would be interesting to find the topological meaning of the invariants of the above type which
are assoc:ated to h:gher spin superalgebras and generalize the correspondmg supergravity invariants.
f g : v ' ' - 99
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Complex conjugation acts on the fields and curvatures according to the formulae

~ b)Y, - 1 —1,
(Mwialifion) = Twliifaan . (MR o) = T RESE) acn - (2.9a,b)

To study the CHST we are going to use the following expansion procedure. Ali fields except for the gravitational
vierbein are assumed to be equal to zero in the zeroth order, and

Oeh s =0u0g : (2.10)

where a:" =(1, 0,0, o',)"’ (the o, are the Pauli matrices ) satisfy the following relations:

Opf0 P =20L,  0pnjo* =254 . (2.11)
The linearized hsc™(4) curvatures are of the form

-1 1 . (k -let1)y . , ]
""Rm (f))d(m) =d, “)w-(vfa(n'f,;(m) +a(s, ¢, n, m)am( )wgfa(n'f ”.ﬁ(m-l)"‘a(-’, €, M, N)O 0 (k)wfv'a&"-"iw(m) s

—b(s, ¢, 1y M) 0,0g P Sl GiyS—b(s, —e= 1, n=1,m—1 VO P OSEG imry (0w), (2.12)
N . 12
_ (n+c+2)(m-c)(2s+m—n)(2s+n..m+2))'
a(s,c.n,m)_.( . T6(n+2)(m+1) , (2.13)
172
(n+c+2)(m+c+2)(23—n—m—2)(25+n+m+4))
b(s,c,n.m):.-.( T6(n+2)(m+2) (2.14)

It can be shown by a direct calculation that the above curvatures are invariant under the corresponding gauge
transformations and satisfy the hneanzed Bianchi identities, Thercfore the curvatures admit a presentation of
the form-R'= %w with 7 %'=0

3. Free conformal theory of higher spin fields

When considering the lincarized theory, we shall limit ourselves to the fields °w, because the other fields "w
has the same frec lagrangian.

The lincarized action which describes | spin s and extends the action of conformal gravity will be chosen in the
form * o )

Al(s)= -(—-—L—)—'-gjd‘x HPI(RIEID) 5 RIG=10) a3s=2) _¢ ¢ ) : (3.1)

(# is an arbitrary overall normalization). The curvatures R'(s, 0, s—1, 0) and R'(s, 0, 0, s— 1) generalize the
lincarized curvatures R/(2, 0, 1, 0) and R/(2,0, 0, 1) (=R'(M)) of CG. They depend on the ficlds o (s, 0,
5-1,0), (s, 0,0,5—1) (which arc the analogues of the Lorentz connecuon) and also on ax(s, 1, s—3, | ) and
w(s, 1, §, 5—2) (the analogues of the ﬁeldfm in CG). ' ~

The cquations of motion

84'(s) wpo . Spls=10) ' s N . o
—_— . 5=1,0) a(2s-2)_. ) - : .
ﬁw("('z:'l 34 ¢ U'JR” - =0, * :'(3'23)

t . :
2a15) ~ €70, RGN A=z S o (3.20)

dew s, ;‘('1)4-3)
are similar to the CG constraint ¢4 R% (M) =0. !

2 One could have included into the freencuon the terms with (see (4.1)) R(s. G 1, jyin wmc{n (s c,lj)#(s.o $~1,0),(s5,0,0,5~1);
however, these terms vamsh on the conventional constraints. Vi p

100 h } - \-. . " '
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The solution to the above constraints can be represented in the form

Rﬁ:;:ﬂ’ NHn= iaﬁ' 2 )Ca(b) ’ Rﬁ:.'::g!.z) ot *6 v’( )C’(z;) 3 (33a,b)
where Cand C are multispinors which represent the spin-s Weyl tensor and have thé form -
Cainym = PGBy, Chan = = FYwliS) s, - (3.4a,b)

In the case of spin 2, these coincide with the linearized gravitational Weyl tensor. The notation used in (3.3),
(3.4) and further on, is ‘

aa,- = 0’",,,‘3,, sy Wag = a",,,'w?ﬂ__ . ( 35 )

We have also introduced the quantities

0,,° =00, 2, =0,f0,% (36)
which satisfy A

€400,V = QighrHD)  enmog SO gigmi) ' (3.72)
€95, 2D 0y = — 1618258 €496, D8, =16i6465 . o (3.7b)

In order to express all fields and curvatures through physical higher spin fields only, one needs to add con-
straints to the action (3.1). The conventional constraint of conformal gravity (which is the case of 5=2) is
R(P) =0, In the general case of 53 2 the constraints can.be chosen in the form

Cples—1 A -1,
(o Rpé’a(s:'nz}(,-z)-GmaRpé’ad'iz)z)@_n) =0, RL‘.’amﬂum)—O (3.8)

for all ¢, n, m except for (n, m)={(c, 2s—-c—2) and (m, n)=(25-c-2,c)and c=0, I, .., 5—1.
The latter curvatures R/(s, ¢, ic, s—4c—1) and R/(s, ¢, s—}c~1, §c) can be determined with the help of the
linearized Bianchi identities. These, in turn, can be rewritten using the constraints (3.8) as

(3, RS\, =) f(e) ""\/(C"’ 1)(s—c—1 )UmR%a(ﬁtcl-)—J)j(c) j)=0 s : (3.93)
f‘"”( a Rg:;('c‘)‘.”(h—c—I) +\/(C+ 1 )(S-—C— 1 )dmRL(;;(lé‘)H'”’ .ﬂ(?.t—c-.v)) =0 ’
c=0,1,s=1. - - = % . (3.9b)

As a result, all curvatures are expreisc_d only through C and C and their derivatives, aS

Rumumm

=a(s,c)0(c)(6(n-—23+c+Z)J(m—c)d,. m)éu 3§ Cacan +8(n—c)d(m— 2s+c+2)0, VL. aﬂc,,(,,,)

\.
[

- . -
a(s,c)=2““’(%(s£—l—li%3) (=1), 8(c)=1(0)atcz0(c<0). ' (3.10)

The constraints (3.10) generalize the CG linearized relations R(P)=R(D)=0, R(M)=C and R(K)=DC
(see ref. [23]). . . :
The relations : . . S | -

(a1, R ~o4 oy (K=, e)
w";’«m-r-lmr 1)~ % ‘“g&uh—'c-zwm' OSGeteE N i mey ~ VGOl S o2y (3.11a,b)

c=1,2,..,5-1, . / . o
which are the consequences of the constraints ' N L
RI(s, —c, ¢, s de—1)=RY(s, —, s—dc=1,4c)=0 " |
- - 101



N

\,
N\

Volume 231, number 1,2 - PHYSICS LETTERS B 2 November 1989

allow us to express the auxiliary fields w(s, 0, s—1, 0) and w(s, 0, 0, s— 1) only through the physical spin-s field
w(s, 1 =3, } (s=1), §{s=1)). The Weyl tensor is expressed through the physical fields as

Caqzo ~ a._ _ag’w&fa'iu'u'—’gm-m Chan ~ % £ 8% 05Fais T dia-1)- ) A3.12a.b)

3

The action (3.1) can be written in terms of C and Cas
Al(s)= %ﬁpf d*x(Cagzey C*® + Gy, OO (3.13)

With eq. (3.12) taken into account, this action is equivalent to the known higher-derivative action for con-
formal higher spin fields which was introduced in ref. [6], see also Appendix A. It differs from eq. (B.4) only
duc to the multi-spinor notations chosen to write it down. .

We have therefore demonstrated that the free CHST can be geometrically formulated in terms of the linear-
ized hsc™(4) curvatures, similarly to the free theory of massless higher spin fields in ADS, [12,19]).

4. The cubic interaction in the conformal theory of higher spin fields

- e
“The most general action depending only on curvature, dimensionless and party conserving is given by

A——— Y (- )’”ﬂ(n s, ¢, 1, j) jd‘lxeum (")R('“(Z))J(Zl (MRG-1—)-a2h fp) |

nz0, s>2 |c|<s-—2, I,J—_-“cl,...;l+j<s-l, (4.1)

where 8(n, s, ¢, I, j) = — B(n, s, ¢, j, [) are arbitrary coefTicients. The quadratic part of the action is the sum of
the free actions (3.13) (when the constraints (3.10) are satisfied ). In the cubic order only terms with (s, ¢, /,
N=(s,¢,s=4lcl—1, §iel), (s, ¢ dlel, s—§lc} —1) are sufficient, and all other terms are equal to zero by the
canstraints (3.10). Therefore, we consider in the cubic approximation only the terms with 8(n, 5, ¢, s~ }jcl -1,
Ve =~p(n, s, ¢, dicl, s=4lcl=1)=8(n,s,c).

The gauge variation of the action ** (4,1) is given in the cubic order by the general structure R'R’#, where #
arc gauge paramcters. We shall analyze it-in the 1.5 order formalism, assuming that the linearized curvatures
satisfy the constraints (3.10).

The gauge transformations which leave the action (4.1) invariant in the cubic order, are of the general form

dw=5w+Aw, Jw=94, (4.2)

where Aw are some deformations of at least sccond order (the ficlds w and gauge paramcters # arc of the first
order). When checking the cubic order invariance of the action, the only cssential deformations are Aw (s, 2 —s,
s, Is—1) and Aw(s, 2—5, 151, 15). As concerns the deformations Aw of all other ficlds, they either enter in
84 multiplicd with the constraints (3.10), or (§4/8w)Aw are of at least fourth order (for some of the fields,
84 /8w is of at least second order). The auxiliary fields Waw(s, 2—s3, is, }s—1) and P w(s, 2—3, §s—1, §s5) can
bc expresscd at the linearized level through the physical fields with the help of the constraints

. i
("’RL‘:;:,'__."M(,_”_O, : - A (4.3)

which genceralize the constraint R(p)=0(s=2). Let us assume that these ‘constraims are also \lralid in scéond
order. Then the corresponding i mvarmncc conduuon with respect to the lransformauons (4.2) allows onc to find
the deformations '

# Only in the case when B(n, s, ¢) m B(n, 3} which are independent from C. S \ .

1
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13— cbses 24(81,6) s
A(")w;;‘,al(f,,;(),_g)=" Z jrta-s — -
X ([ +ny+n+s,+534+512)8(q—s, +i(s+14c)=Nd(p—j+i(s~c-1))
n -1 ¢ s1—4c—1 de *
X|n s;=1 l=s—c I J ) ELET LTI iyypy ¥O
n s—1 l-=s fs-1) A1)
Xa“,.f‘,‘ 6‘6'...8‘,‘ ("”Ca(ln-c—q)r(q)l(c) , C=0, wy Sy =1, (443)
€= P
B MWSETH s = (A Mg piy.ac-2)) - : (4.4b)

’

These are similar to the deformation Aw2® ~ £*R325(M) which is present in the transformation law of a
Lorentz connection. :

We now proceed directly to the study of the variation 84 = 8,4 + A4. The variation ;A4 consists of the terms
of the type 8°C,3'C,, and 3°C,d°'C,, where ¢=0, ..., 5—2, ¢,=0, ..., 5,— | and C, and C, denote the spin-s Weyl
tensor. (Due to the simple identity, €20, ) G2, =0/ expressions such as 3°C, 3 C,, do not contribute to
8,4). The terms with c=5- | are not present in 8,4 because the terms involving R(s, s—1, {(s—1), §(s-1))
do not enter in 4. Now divide 8,4 into two parts. The first one, (8,4): comprises the terms with c=0, ..., s—2
and ¢, =0, ..., 5y —2 and it can be brought to the form - -

-
I

(8,4), ={-—4 T TG+ 4 ks, +53+512) [B(n, $) = (= 1)1+ T5 05 mB(m, 5,

. ) .- n Sl—l Cy S|"&C|—l icll
Xo(g—s +s—{(c=c))=Dd(p+i(c=c))) | n s3~1 —c=¢, J o a(s c)asi, ¢r)
n s=1 ¢ S=4c=1 ic

1
X | d4% @, 0,90 me. 3% ¥ Ca-), (m)gn=t—cean@ . do by
Ll AN a(2rzc1— ) @ider) 92-. 0% &e) alii-g " H(2-p) c.c.
I4 ) o e

cy=—p
'

(€=0,.4,5-2,¢,=0,..,8 =2), ' (4.5)

which is symmetricin C, and C,b,'. In the process of derivation of (4.5) we have used the symmetry property
(3.6), (3.7) of the hsc™(4) structure cocfficicnts. One easily notices that (84), =0 if and only if the equation

[B(m, $)= (= 1)+ 7By, 5,) 18 Is1 + 52453+ 1y + 13+ 13 |2) =0 o (4.6)

is satisfied for all n,, n,, n>0and 5y, 55, 5> 2.
The general solution of (4.6) can be written as

B(n,s)=(-1)"8, - (4.7) = -

where ffis an arbitrary constant. The whole frecdom in the cubic action has thus been reduced 1o a normalization
constant . The correct normalization of the conformal gravity action follows by setting f=1/2a?, wherc v is
the dimensionless coupling constant of conformal gravity. :
The second part of the variation (§,4); consists of ¥C, 8" ~'C,,- and 3C, 3" ~'C,,-type terms. It is an casy
matter to verify that these terms cancel against similar terms in the deformation **
. . 1 .

i .
]
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)
<

1 (-1)" J‘ . L
A=~ — d*x(98%...9%; (™ (Mg ls=1.2-naf als) fs-2) 4o o 4.8
alk - /oo1) VML Gy A M ST, (43)

+ where A(w) are read off from eq. (4.4). The terms of the forms 8°-'C,8"-'C,, and 9*~'C,8*~'C,, are also
present in the A4 deformation. These cancel out due to the symmetry property (3.6), (3.7), similarly to the
case of (8,4),. ) ’

Therefore, we have proven that the action (4.1), (4.8) is invariant in cubic order under the deformed gauge
transformations, 84 =8,4+ A4=0. Note that the invariance of the action arises from the symmetry property
(3.6), (3.7) of the hsc™(4) structure coefficients. Due to this property, it has become possible 10 solve the
cquation on the f(n, s5) coefficients. At the same time this symmetry property is not shared by the structure
cocfficients of the factor algebras hsc'™ (4) (n=1, 2, ...) of 1he algebra hsc>(4), constructed in refs. [3,4],
which contain all spins with multiplicity n. Thercfore there exists no invariant action constructed out of the

" curvatures associated to the above algcbras. Similarly, contractions of the supcralgebra shs(N|4) (sce refs.
[15.16] do not gencerate a consistent interaction of higher spins in ADS,.

We thus conclude that of the whole series of conformal higher spin superalgebras, the only algebra which gives
rise to an invariant interaction is the one containing an infinite number of fields of each spin. We should, how-
ever, make the two following remarks. |

First, the above conclusion applies only to a given series of algebras and thus has no general meaning. How-
ever, the infinite multiplicity of all spins appears natural. In string theory all spins are represented an infinite
numbcr of times.

Under spontancous symmetry breaking all higher spins might bccome massive, in analogy to string theory.

Note that an infinite number of spin-two ficlds arc present in our thecory. However the SO(4, 2) subalgebra is
spanncd by only those "T'(2, ¢, /, j) gencrators (spin-two gauge ficlds) of the infinite dimensional algebra which
have n=0. We identify the corresponding fields with conformal gravity fields. The rest of the spin-two n>0
ficlds should acquire a mass by means of a spontaneous symmetry breaking.

Second, it should be noted that our conclusion concerning the infinite multiplicities of all spins goes beyond
the cubic approximation. As discussed in refs. {15,16], those gauge transformations which leave the action
invariant in the first non-trivial order in the interaction, do not furnish an algebra. The cubic order invariance
of the action docs not imply, thercfore, that the structure coefficients which enter the definition of the curvature
should satisfy the full Jacobi identitics.

All thatis required of these structure cocfficients are the symmetry propertics which would allow one to cancel
terms in 84 of the type 9"C"C4 and ¥"Co"C4. A

In cubic order, it is possible in principlc to limit onesclf with the ficlds %, setting the ficlds "w with n>0
cqual Lo zcro. As discussed in ref. {4], the corresponding generators °T do not form a closed algebra ( except for
thosc gencrators associated to spin-two ficlds which furnish the SO(4, 2) algebra). At the same time, the action
(4.1), (4.8) built up from *incomplcte curvatures” (which do not satisfy the full Bianchi identitics) is cubic
order invarianl. However, we have been having in mind the construction of a complete interaction (which
alrcady in fourth order crucially rclics on the full Jacobi identitics to be satisfied ) and thus have considered only
those theories which are built upon closed Lie algebras.

Let us note an essential difference between the proof of the invariance of the cubic interaction in conformal
higher spin theory, and the corresponding proof in the ADS, higher spin theory [15,16]. When establishing the
invariance in the ADS, theory, only the lincarized constraints were essential. In the conformal theory, on the
other hand, the nonlinear constraimts ™R(s, | ~5, }(s—1), } (s~ 1)) =0arc csscatial, along with the lincarized
constraints. ‘

The extension of the above analysis of the supersymmetric case will be published in a separate paper. Note
that since we consider all spins, no restriction on N from the above emerges, contrary to the N<4 constraint in
conformal supergravity, In particylar, the N=5 model contains the SU(5) grand unification group.
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Another important task is to construct higher orders of the interaction. The fundamental problem consists in
finding non-linear constraints which generalize the supergravity constraints,

-
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Appendix
*“Pure spin” conformally invariant actions. In the tensor formalism, the spin s is described by a completely
symmetric 1ensor ¢,,(,,. The simplest conformally invariant action for spin 5 is of the form [6]

AG)= [ d% gy PR, e - (A1)
where the spin projector P is traceless and transversé, |

TPl =0, 8,Pi}=0. . (A.2)
Thc action 4(s) possesses the gauge symmetry Lo .

BuBucer = duduce—1) = Nuphpis-2) - L (A.3)
It can be re-written in a slightly different form a§ h )

A(s)=(=1) _[ A% Cpigy sy CHOM7 O | (A4)

where the linearized Weyl tensor associated 10 spin s is of the form

Cutrortny = PTG ar"'a¢,¢c(l) . (A.5)
1 '
S . )
In particular; C,, coincides with £, for a vector field, while Clu(2).0(2) coincides with the lincarized gravita-
tional Weyl tensor. .
The Yoqng projéctor & is associated with the irreducible traceless tableau

B

e 4 N [}

and obeying the (anti)symmetry cd‘ndilion

i . -
- P fr)—"l(i'u),u(;) =0, ) (A.6)

and traceless,

;

N PR =0, | - A7y .

By virtue of these properties the Weyl tensor C(s) is invariant under the gauge transformations (A.3).
In order to pass from eqs. (A.4) 10 cq. (A.1) it suffices to intcgrate by parts and cmploy the obscrvation that,
in view of the propertics satisfied by 2, the following cquality holds: -

P =250 89 8% 0. . ; (A8)
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