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Infinite-dimensional conformal higher spin superalgebras are constructed. Based on the
- superalgebra in three dimensions, an explicit expression for the effective action is found. In
four dimensions, the curvatures of higher spin conformaleebras are obtained.

1. Introduction

In Refs. 1-8 infinite-dimensional Lie superalgebras were constructed, gener-
alizing the usual supergravity superalgebras in anti-de Sitter space adS,. On the
basis of these superalgebras in Refs. 1-8 the theories of interacting massless
higher spins in adS, are developed. In these papers, it was established that the
interaction of higher spins among themselves and with gravity is nonanalytical
with respect to a cosmological constant and does not permit to pass to a flat limit.

In Refs. 14-17 it was shown that in the flat space-time, the consistent
interactions of higher spins with gravity does not exist. However in these papers
the case of usual Einstein gravity was considered.

A different situation is possibly realized in the framework of conformally
invariant approach. In the conformally invariant theory, the higher spins are
described by kinetic terms with higher derivatives'® and that, in principle, gives
the opportunity of constructing the consistent interaction of higher spins with
Weyl gravity.

Such theories are interesting from several points of view, Firstly, as it is known
from the experience with supergravity that knowledge of the conformally-
invariant theory of higher spins helps in construction. of the necessary set of
auxiliary fields, which are needed for the closure of the gauge algebra in theory of
Refs. 1-8, and knowing the complete set of auxiliary fields, one could advance to
construct a full interaction. Secondly, the conformal invariance poses strong
restrictions on the possible interactions and there exists hope of constructing a
full lagrangian. The extended superconformal theories with N = 4 are especially
interesting. For example in the theory with N = 5, the gauge group contains the
group of the “Grand Unification” SU(S), hich is suitable for the description of
low-energy physics. Without higher spins, the construction of such a theory
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appeared to be impossible. Thirdly, the possibilities of a spontaneous breaking of
conformal symmetry in such theories are very attractive. One of the possible
scenarios can lead to the appearance of massive higher spins and to the reduction
of a conformal gravity to Einstein gravity. The resulting theory would describe
the interaction of massive higher spins with gravity analogously to a superstring
theory. o ‘

Another possible scenario of a spontaneous symmetry breaking could lead to
the appearance of a cosmological constant and to a theory of higher spins in
adS,.'" The first step towards a construction of a conformally invariant theory of
higher spins is a construction of infinite-dimensional superalgebras containing
the usual conformal superalgebras as their subalgebra. These superalgebras could
be the possible candidates for the role of the superconformal symmetry of higher
spins, which generalizes the gauge symmetry of conformal supergravity.

In Refs. 18, 19 we analyze the case of the three-dimensional space-time. We
construct the infinite-dimensional superalgebras shsc(¥V|3) (super higher spin
conformal), which generalize the superalgebras of conformal supergravity in
D = 3 - osp(N|4). The gauge fields of shsc(N|3) generalize the fields of conformal
supergravity in D = 3. In this case (see below), to construct the complete gauge-
invariant action and to write a generating functional for the Green’s functions
seem possible. However, in three dimensions the on-mass shell dynamics is
trivial.

Here we begin to solve the problem of construction of the four-dimensional
higher spin superconformal theory. We construct a whole series of infinite-
dimensional superalgebras, generalizing the conformal superalgebra SU(2, 2|1).
These superalgebras shsc™ (4|1), n = 1,2, ..., oo are the possible candidates for
the role of the conformal symmetry of higher spins. We obtain explicit
expressions for the gauge curvatures of these superalgebras. The superconformal
gauge theory of higher spins based on these results will be described in a separate
paper.

2. The Method of Construction Conformal Superalgebras of Higher Spins

The construction of a conformal superalgebra of higher spins proceeds through
the following stages:
(1) A choice of a convenient operatorial realization of a finite-dimensional
subalgebra’® with Heisenberg generating elements d, :

[d4, dg} = CA,B- o N

(2) A construction of an associative algebra of polynomials* with respect to
generating elements, chosen in the abstract.

. Unlike the case of adS,-superalgebras,* we must introduce in this algebra a
special superconformal basis, in which all generators have definite conformal
weight and lorentzian spinorial structure. Later with the help of the formulae for
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the multiplication of Weyl symbols A4 of the operators A (see Refs. 4, 10)

A*B = Aexp(A)B, 2)

where

2A = 3

- —
- 4 d

d d
the structure coefficients of an associative algebra are calculated. The structure of

a Lie superalgebra is introduced by fixing the grassmanian parity of generators
and by defining the supercommutator

[4,B} = A*B—(—1)4® Bx 4. 4)

The conformal superalgebras in three- and four-dimensional space-time are
osp(N|4) and SU(2,2|N), respectively. To realize the osp(N |4) superalgebra,
a suitable choice of generating elements is J

(4, b) = it a1 = a,, b} = b,, (5a)

{wn ¢j} u’ ¢ 4’., i= 1 N: (Sb)

where a, f are the two-component spinorial indices in three dimensions. All
operators quadratic in (4, b, ) furnish osp (N]4). The Weyl symbols of all even
orders polynomial operators in this generating elements form an associative
algebra aq®(N|4; C) *with multiplication (2). The structure of a Lie superalgebra
shsc(NV]3) is introduced by the supercommutator (4), where the Grassmann parity
isd(a, b,¢) = A(—a, —b,¢¥) (—1)*’ and the antihermitean condition A1 = ~— 4,

To understand the SU(2, 2| N) superalgebra, a convenient choice of generating
elements is

[a%, @] = 63, [a;, %) = 62, (6a)
(@) = a% @) = aj (@) = @, @) = o, (6b)
{a, o} = 85 (@) = al, (@) =a;,ij=1,...,N. (6¢)

All operators® quadratic in (@, @, a, «') furnish osp(2N|8), whereas those
commuting with the *“particle number” operator

* Both the operator and their symbols are_denoted by the same letters. Let us mention that the
supertwistors Z = (4%, a3, a) (and the dval Z = (@,, @ 8 , a")) are natural for the construction of con-
formal superalgebras.
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T= t-l,,a“-f-ﬁﬁarl-afa ) @)

(excluding the operator (7) itself) form a subalgebra of osp(2N|8) which is
SU(2,2|N).

Our next step is to consider of higher order polynomials in the generating
elements. The associative algebra of those polynomials in the generating elements
(6) that commute with the “particle number” operator is called agpc(2,2|N;C)
(associative quantum particle conversation). The commutation relations (4) with
the Grassmann parity

A(—a, —a,0,a") = (—1)"4(a, 3, o, ") (8a)
. and antihermitean condition

At=—4 (8b)

endow agpc with a Lie superalgebra structure which we denote as /U(2,2|N)
(infinite dimensional unitary).

To construct a gauge theory, however, it is necessary to introduce in iU(2,2|N)
a particular superconformal basis in which /U(2,2|N) would be explicitly
decomposed into SU(2,2|N) irreducible representations.

To construct this basis, the standard technique of the representation theory of
Lie algebras is to be used. One finds out all the highest vectors with maximal con-
formal weight and acts on them with operators which lower conformal weight.
Then an irreducible spinor basis is obtained through the use of spinorial Clebsch-
Gordan SI(2; C) coefficients. The curvatures are calculated in the superconformal
basis with the help of the known structure coefficients for the three-dimensional
conformal superalgebra shsc(N]|3).

Factoring out the /U(2,2|N) to its centre, generated by powers of the “particle
number” operator (1.7), one obtains the superalgebra shsc®(4|N).

3. The Three-Dimensional Theory of Higher Spins

Following the operatorial method of constructing conformal superalgebras of
higher spins, we obtained in Ref. 18 the superalgebra in three-dimensional space-
time. With the help of this result, we obtain the complete quantum conformal
theory for all higher spins.

The gauge fields of this superalgebra shsc(V|3) have a form (our notations are
explained in the Appendix)

-—|2s k), a (2!
@, = 2 i 08 TR ©)
5,6.k,1
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where the generators T are the polynomials in generating elements (5). The
summation parameters in (9) take the values

,1,...,0;¢c=—s5,—s+1,...,8

I=lc|le|+1,...,55k=0,1,..., Nand k+ 25 is even,

sis a spin of conformal multiplet of generators®, c is the conformal weight of fields
and generators, 2/ and k are the numbers of a Lorentz and internal indices,
respectively. The fields and generators with integer (half-integer) spin s are
Grassmann even (odd).

The Hermitean conjugation has a form

w? = —w, (wi(k).a(Zl))f = (_ l)k(k-l)IZ wi(l(C).a)(ﬂ) . (10)

] w(s.0) ®(5,¢
The curvature of shsc(N|3), defined by the general formula
Ry = 0,0, T [0y, ©,] (11)

have a form'®

' +s"—s+r—irh—1 k!
Ftwaeh = Hu@Vi,aan + Z oty Torn 0 +e¢=0)

X Stk—u—v)6Qp—1' —0I"+16Qq—1-1I'+1I")
X 8Qt—I1-1"+1)o(|4s’s" +s' +5" —s+uv+r(u+v)+1))

s s s
X ¢ ¢ c|ofidineconm @i y(2D), (12)
r U1

where the matrix of structure coefficients is given by the relations®

J S: s: ~ QI+ DT F DIl + 1!
jc 1T N U=+ =D+ —DIHT + T +1)!

® The corresponding gauge fields has a spin s+ 1 due to a vector index.

¢ In the expression, (13) is the usual elements theory of the angular momentum?®-9j—coefficients,
Wigner d-functions and triangle coefficients A. The summation indices in (13) &, k", k' =—I —I+1,
., . There is a slip of pen in Eq. (15) of Ref. 18, the correct expression is Eq. (13) of this article.
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X Z (- 1)1/2(.v+s’—s'—k-k’+k")

ki k"
T T n
dex (5) diw (5) dix (5)

A(s+k stk s”+k”)A(s—ks’—k' s”-k") -
27 2 ' 2 2 2 7 2

i s+k s—k l\
2’ 2’
s+k sk
X 4 , . 13
5 5 (13)
s"+k" k"
, U
. 2’ 2 p

It is assumed that the coefficients (13) are equal to zero, if at least one of the
following conditions is not fulfilled

s"e{ls—s|,...,s+s' Ve{l=0|,...,1+1'};
ctc'—c¢” =0le{c|,...,sh I e{|c],...,s'}; (14)

Uellc’],...,s" e ss;|c| <5 )c"| <57,

and all numbers in each column in (13) are simultaneously integer or half-integer.
The formal summation range in (12) is

: 1
S’,s”,l,l",p,q,t=0,5,l,---,oo;

(15)

Lo uv,r=0,1,...,0.

It is however additionally restricted, due to a definition of the coefficients (13) in
(14), by a &funqtions, by the factorials in the denominator and by the
antisymmetry with respect to internal indices.
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The action of superconformal-invariant theory of higher spins in D = 3 can be
written in a form of a Chern-Simons functional
. ‘ )
J= | TrloA dm+§w/\w/\a)' ,
(16)

1
0= wdx", oNne = 3 (0,*w,— w,*w,)dx*Ndx",

where the trace of the Weyl symbol of the operator is defined by the formula
Tr (4(g)) = 4(0), (17)

where g is the symbol of generating elements (5). The equations of motion have a
form

R ey = 0. (18)

This theory is a gauge-invariant theory of rank one and we perform the
quantization of (16) according to the general rules of Refs. 10-12,

The generating functional of all Green functions of the superconformal theory
in three-dimensional space-time has a form

Z=f@w,f®m P C* D C expliSg}, (19)
where
J: J‘+fd3 T ( 20, 02, ) (20)
r
= XI\TST 3C ’

c=c*T,,C = C,T*, &, — shsc(N|3) covariant derivative, C*, C, are the
ghosts and antighosts, 7,(T*) - generators of shsc(¥|3), and the fermionic
generator of the gauge conditions are

rld) Jr,l‘p

fd’xé ?(w,C, C'), T, etc. 21

One can convince himself, that as usually for Chern-Simons theory in the three-
dimensional space-time, the dynamics on the mass-shell is trivial.
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4. The Conformal Superalgebras of Higher Spins in Four-Dimensional
Space-time

Our next problem is to obtain the conformal superalgebra for higher spins in
four-dimensional space-time. Following the programme of Sec. 2 we obtain the
structure constants of higher spin conformal superalgebras and the explicit
expressions of the gauge fields and curvatures.

The gauge fields of the superalgebra shsc® (4/1) have the form

[+2] a0
— 6, Cl) 2),525) ;—12¢k
W= D DD Ogben ek T )y = 0,1,2,3, (22)
n=0 s=1 scu
Lj

where for the generators ®T5;5% . s-is a highest spin of a conformal super-
multiplet s = 1, 2, ..., o; « - is the spin of a given conformal multiplet in a
supermultiplet. = 5, s — 1/2, s— 1; ¢ ~ is the conformal weight of a field c = —s,
—s+1,...,s; u—isthe chiral weight of a field u = — 1/2, 0, 1/2 (u + + - integer),
[u, T™] = 3/2 iu T®; (I, j)-is the Lorenzian signature of a field, where /,
i=0,12,1,...,[=|c—w2|,j=|(ctu)2|,l+j<s, I+(c—u)/2and j+(ct+u)2
are integer. Theindex n+ 1 = 1,. .., co numerates the identical supermultiplets.
The gauge fields (22) generalize the gauge fields of conformal supergravity to the
case of higher spins.? It contains an infinite number of conformal supermultiplets
of every spin (the spin of a field w$*““is++ 1 due to a vector index). The grass-
manian parity of fields and generators is 0 (or 1) for integer (or half-integer) spin
& The curvatures of the superalgebra shsc® (4|1), defined by the general formula
(11), have the form

(s,.6,10)

) o) . .
DR ian = Otn OV aBh. san
+ E YT 8 e =)o + u” — )

X 6Q—1 +I'—=D6@m—~1I —U'+No@r—=1"+1' —1)

X 6Q2p—j —J" +))6(2q—j" —j+Jj)6Q2k+j"—j=J')

¢ The conformal supergravity fields are: (@{L}"%; wi”; Lo o w09 @l B,
(1,1/2,1/2,1/2,— 1/2), (1,1/2,—1/2,172), {1,172,—1/2,—1/2).
wl. a ] wﬂ. o ” @

: Py i @) o (fahs Qpays Qudrs Bus by Buii Puas
WM;‘P;A.&;A;:)- '



Conformal Superalgebras of Higher Spins 2371

X 8(|s+s"+s"+n+n +n"+1})

4

n s o c w I J
)4 n” s " u” I” j”
n s « ¢ u 1l j
(n), (6" ") (e " u")y(2m)
X @y, dnyem picen Dy, a0 (23)

where the matrix of numerical structure coefficients is defined by the formula

nos e o WLy
Ry 8 & € u L jp
ny Sy w3 € Uy L Jy

:
= > > JHewnsin

sn=sptn; aftefm=aitnf i=1

X C\2 =l 1), V2 Gt niti—jit Dt

IR RS i B L e B e Tk
V2 Gl—eiHiti+ 1), 172 (ef—ofHi+ji+ 1), I,+j‘+|} X (—1) Au,,u,,u;

&1 &3 &4 o1 iy o5

» CI— U Cy— Uy C3— U catu, ctu, ctus (24a)
2 2 2 2 2 2
I L [ J J Js

000 _ 41,1,0 _ 4011 _ 41721720 __ LWL12 __ 4121721 _ 401/2172 _
AU,O,O - AOOO - AO,‘O 0 A 1/2,-1/20 AO,I/2,112 A =4 1: (24b)

,0, 4 1/2,—1/2,0 0,172,112 —
NN LI _ 1 hhthth -k hhh
Au:,u,,u; _—A—ul,—uz,—ug - ( 1) Au,,u;,u; (240)

and all the 4-coefficients besides (24b) and obtainable from them with the help of
the symmetry properties (24c) are equal to zero. The Cf,,r ,,f',,, are the usual
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Clebsch-Gordan coefficients and the non-zero coefficients C.(s,n,s’,n’) are

Co i )= 1, C( ) 25+n+3
$— ns,ns)= s Lln,8,n,8) = IR

" 25+3

Ci(n,s,n—1,s+1) e

5 sy I ’S = ’
25+3

Coortmsntls—) = | 2oL C (nons) = ) 22 (24q)
s—1 W9, ) 2s+1 , L, 8,n,s 25+ 1 .

The structure coefficients of shsc” (4{1) (24) include the structure coefficients of
shsc(1|3) (13) and the coefficients of the transformation to the superconformal
basis. We redefine them in such a way that they are equal to zero, if at least one of
the following conditions is not fulfilled:

C1+CZ=C3, u|+u2= u3,13€{|l]_12|,...,l|+12},

. .. L. . ¢ U
J}e{l.]l _Jz|,---aJ| +i) htiise, lizl ’2 ’
. (25)
. ¢+ u; o] < { | 1 }
i = ) [Ci| S5 € 18— L, 85— 7,8,
] 5 | Liy 5 € 2

sstme{s,+n—s,—m,...,s5,tn+s+n}

and all numbers.;, ¢;, #;, [;+ j; are simultaneously integer or half-integer for every
i=1,2,3.
The formal summation range in (23) is

s’s"=1,2,..., 0;
, .. 1
J-’,&",l,l”,j’,J”, 1, m, k,P, q,r= 0,5’ 1,...,@;

| 1 1 1
’, " = —_’0’—; ,’ o = - 9"”—1,—_’ !—,”'9 . 2
w,u 503 c,c [+o) > 0 2 @ ( ‘6)
The Hermitean conjugation acts at the fields (20) according to a formula

= — (n) o (5,0.0, 1), t — (), (560 —4)
W, = — @, ("0 50 0)) W5, a2 - : (27
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The derivation of formulae (23), (24) for the curvatures and the structure
coefficients in the superalgebra is based on the operator representation of the
generators of shsc® (4|1) is very lengthy and will be published in the complete

form elsewhere. The curvature (23) generalize the curvatures of the conformal
supergravity.'> The superalgebra shsc®(4|1) is not simple. In a special basis,

connected with a basis (22) by the transformation of a form

(n) As,e,c,0) (m) is,«cu)
fo(zlmzn 2 Com(SY™ T ooy oy » (28)

m=0

the commutation relations of shsc® (4|1) take a form
(n) T (m)T} 2 (n+m+k)T (29)

From these formulae we see that the sets of generators ™ 7T with m = n for every
fixed n form the family of the ideals, which are inserted into each other. The
factor-algebras with respect to these ideals, are obtained by the identification

MT=0,m=n, (30)

we denote shsc™ (4|1),n=1,2,..., 0.

Evidently, these superalgebras contain the conformal supermultiplets of all
spins with the degeneracy equal to n. This family contains a simple superalgebra
shsc(4]1), which we denote simply by shsc(4|1). This superalgebra contains the
conformal supermultiplets of all spins only once and as its maximal finite-
dimensional subalgebra contains an algebra of the usual conformal supergravity.
The gauge fields and curvatures of shsc(4|1) are written as

W= 3, bz Tosen @31
a3 h2j)
= 3, 055E0 jan T Z 8¢’ +c" =)o +u —wé2m—I —I"+1)
XoQr—=U'+I' -DéQt+I"=1' —1éQRp—j—j +J)

X 8Q2q—j"—j+j)oQRk—j—j +j)o(s+s +5"+ 1))
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(5,50, 0') {s",2",c", u")y(2m)
X Wy a2y 32m), f 20520y Dy, a2r), h20),5(2p) * (32)

where the new structure coefficients of factor algebra are connected with (24)

i o 6wy J:l (2m)'(2s3+2)'
2om G b Z @5, +2m+2)!

S5 & ¢ Uy b oJy
(46D (rmt)
9 3 2 3 5 .l S3TM 3

m!

0 s & ¢ w b j
X1 0 5 o 6 v, L jof- (33)
2m 53 53 0 Uy Ly

Let us take note that the conformal basis in shsc(4|1) is defined up to a common
multiplier of the generators (31). The curvatures (32) straightforwardly generalize
the curvatures of the usual conformal supergravity to the case of higher spins. The
curvatures of conformal supergravity are contained in the formula (32), when
s=1.

The gauge field shsc(4|1) contains all the fields with an integer spin twice (in
the supermultiplets with highest spins s and s+ 1).

It can be shown, that all the results on the construction of superalgebras can be
generalized to -a case of the extended conformal supersymmetry of higher spins
with arbitrary N. Let us mention that an important selection criterion for the pro-
posed series of superalgebras is the possibility of their localization and of the con-
struction of a selfconsistence complete theory. The solution of this problem
would be done in the next article.

Appendix: Notations and Conventions

We follow the conventions of Refs. 1-8. The two-component spinorial indices
are raised and lowered by means of ;= —é&,, e? g,=¢% = 1 as
A* = &% 4,, A4, = £,,4" and analogously for dotted indices. The internal indices
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(i,J, k, . . ) are raised and lowered by J;, 87. The metric has a signature (+, —, —)
and (+, —, —, —) in three and four dimensions respectively.

A symmetrization (anti-symmetrization) is implied for any set of upper or
lower spinorial (internal) indices denoted by alike letters. The usual summation
convention is understood for each pair of a lower and an upper index denoted
by the same letter. We often use the notations 6(n) = 1(0), n = 0 (n#0);

|n}, = mod,(n) = n—2[n/2] ([n/2] is the integer part of n/2).
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